1
|
Ștefănescu BE, Socaci SA, Fărcaș AC, Nemeș SA, Teleky BE, Martău GA, Călinoiu LF, Mitrea L, Ranga F, Grigoroaea D, Vodnar DC, Socaciu C. Characterization of the Chemical Composition and Biological Activities of Bog Bilberry ( Vaccinium uliginosum L.) Leaf Extracts Obtained via Various Extraction Techniques. Foods 2024; 13:258. [PMID: 38254559 PMCID: PMC10814626 DOI: 10.3390/foods13020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
This investigation aimed to assess the chemical composition and biological activities of bog bilberry (Vaccinium uliginosum L.) leaves. Hydroethanolic extracts were obtained using four extraction techniques: one conventional (CE) and three alternative methods; ultrasound (UAE), microwave (MAE) and high-pressure (HPE) extractions. Spectrophotometric analysis was conducted to determine their chemical content, including the total phenolic content (TPC) and total flavonoid content (TFC). Furthermore, their antioxidative and antimicrobial properties were evaluated. HPLC (high performance liquid chromatography) analysis identified and quantified 17 phenolic compounds, with chlorogenic acid being the predominant compound, with the lowest level (37.36 ± 0.06 mg/g) for the bog bilberry leaf extract obtained by CE and the highest levels (e.g., HPE = 44.47 ± 0.08 mg/g) for the bog bilberry leaf extracts obtained by the alternative methods. Extracts obtained by HPE, UAE and MAE presented TPC values (135.75 ± 2.86 mg GAE/g; 130.52 ± 1.99 mg GAE/g; 119.23 ± 1.79 mg GAE/g) higher than those obtained by the CE method (113.07 ± 0.98 mg GAE/g). Regarding the TFC values, similar to TPC, the highest levels were registered in the extracts obtained by alternative methods (HPE = 43.16 ± 0.12 mg QE/g; MAE = 39.79 ± 0.41 mg QE/g and UAE = 33.89 ± 0.35 mg QE/g), while the CE extract registered the lowest level, 31.47 ± 0.28 mg QE/g. In the case of DPPH (1,1-diphenyl-2-picrylhydrazyl) antioxidant activity, the extracts from HPE, UAE and MAE exhibited the strongest radical scavenging capacities of 71.14%, 63.13% and 60.84%, respectively, whereas the CE extract registered only 55.37%. According to Microbiology Reader LogPhase 600 (BioTek), a common MIC value of 8.88 mg/mL was registered for all types of extracts against Staphylococcus aureus (Gram-positive bacteria) and Salmonella enterica (Gram-negative bacteria). Moreover, the alternative extraction methods (UAE, HPE) effectively inhibited the growth of Candida parapsilosis, in comparison to the lack of inhibition from the CE method. This study provides valuable insights into bog bilberry leaf extracts, reporting a comprehensive evaluation of their chemical composition and associated biological activities, with alternative extraction methods presenting greater potential for the recovery of phenolic compounds with increased biological activities than the conventional method.
Collapse
Affiliation(s)
- Bianca Eugenia Ștefănescu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
| | - Sonia Ancuța Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Anca Corina Fărcaș
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Silvia Amalia Nemeș
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Bernadette Emőke Teleky
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Gheorghe Adrian Martău
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Lavinia Florina Călinoiu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
| | - Laura Mitrea
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Floricuța Ranga
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Dan Grigoroaea
- Călimani National Park Administration, Șaru Dornei, 727515 Suceava, Romania;
| | - Dan Cristian Vodnar
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.E.Ș.); (S.A.N.); (B.E.T.); (G.A.M.); (F.R.); (D.C.V.)
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| | - Carmen Socaciu
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (S.A.S.); (A.C.F.); (C.S.)
| |
Collapse
|
2
|
Chemical Characterisation, Antioxidant and Antibacterial Activities of Pinus pinaster Ait. and Pinus pinea L. Bark Polar Extracts: Prospecting Forestry By-Products as Renewable Sources of Bioactive Compounds. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020784] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Agroforestry by-products have gained rising attention in recent years as they represent inexpensive and abundant raw materials that are a source of added-value chemicals, e.g., for food and pharmaceutical applications, as well as for bioenergy generation. Pinus pinaster Ait. bark extracts are consumed worldwide for their cardiovascular benefits, whilst the health potential of Pinus pinea L. bark has not yet been deeply exploited. Therefore, this study highlights the chemical characterisation of Portuguese P. pinaster Ait. and P. pinea L. bark polar extracts, via ultra-high performance liquid chromatography-diode array detection-tandem mass spectrometry (UHPLC-DAD-MSn) analysis, and their antioxidant and antibacterial activities. Quinic acid, an A-type procyanidin dimer isomer, protocatechuic acid, and quercetin were identified for the first time as P. pinea L. bark components. Moreover, this bark demonstrated a higher total content of identified polar compounds than P. pinaster Ait. bark, with quinic acid being the most abundant compound identified. Regarding antioxidant activity, the pine bark polar extracts exhibited strong reducing power and 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis-(3-ethyl-benzothiazoline-6-sulfonic acid (ABTS) radical scavenging effects compared to natural antioxidants. Moreover, the bactericidal actions of pine bark extracts were shown against Staphylococcus aureus and Escherichia coli at a 3.13–25 mg mL−1 range. Globally, these promising insights can boost the sustainable exploitation of P. pinea L. bark, as already occurs with P. pinaster Ait. bark, for the food and biomedical fields.
Collapse
|