Wang J, Lei T. Separation of Semiconducting Carbon Nanotubes Using Conjugated Polymer Wrapping.
Polymers (Basel) 2020;
12:E1548. [PMID:
32668780 PMCID:
PMC7407812 DOI:
10.3390/polym12071548]
[Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 11/16/2022] Open
Abstract
In the past two decades, single-walled carbon nanotubes (SWNTs) have been explored for electronic applications because of their high charge carrier mobility, low-temperature solution processability and mechanical flexibility. Semiconducting SWNTs (s-SWNTs) are also considered an alternative to traditional silicon-based semiconductors. However, large-scale, as-produced SWNTs have poor solubility, and they are mixtures of metallic SWNTs (m-SWNTs) and s-SWNTs, which limits their practical applications. Conjugated polymer wrapping is a promising method to disperse and separate s-SWNTs, due to its high selectivity, high separation yield and simplicity of operation. In this review, we summarize the recent progress of the conjugated polymer wrapping method, and discuss possible separation mechanisms for s-SWNTs. We also discuss various parameters that may affect the selectivity and sorting yield. Finally, some electronic applications of polymer-sorted s-SWNTs are introduced. The aim of this review is to provide polymer chemist a basic concept of polymer based SWNT separation, as well as some polymer design strategies, influential factors and potential applications.
Collapse