1
|
Hoyt KW, Block AC, Tung J, Goodman MS, Lednev IK, Heo J. Quick Freezing-Induced Au Nanoparticle Aggregates (QFIAAs) for Near-IR (NIR) Surface-Enhanced Raman Scattering (SERS) Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2300-2311. [PMID: 39818808 DOI: 10.1021/acs.langmuir.4c03842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Here, we report a simple method to prepare near-IR (NIR) surface-enhanced Raman scattering (SERS) substrates by quickly freezing a citrate-capped Au nanoparticle (AuNP) solution in liquid nitrogen, followed by thawing it at room temperature. This process aggregates AuNPs in a controlled manner by forming ice crystals with smaller grain sizes when compared to a slow freezing process. The resulting smaller AuNP aggregates remain suspended in solution long enough to conduct high-throughput chemical analysis in a microwell plate using the NIR SERS spectroscopy. We named these aggregates quick freezing-induced AuNP aggregates (QFIAAs). The aggregation state of QFIAAs in solution is stable for at least three months when stored at 4 °C. Several QFIAAs were prepared using monodisperse citrate-capped AuNPs of various sizes. QFIAAs prepared from AuNPs with an average diameter of 70 nm (70 nm QFIAAs) showed the best performance, considering both NIR SERS activity and the repeatability of the results. The NIR SERS enhancement factor of the 70 nm QFIAAs measured using 57 nM Rhodamine 6G (R6G) was 5 × 104. The R6G molecules could not displace the citrates present in the hotspots of QFIAAs, indicating that the long-term stability of QFIAAs originates from the tight interparticle binding through the citrates. The limit of detection (LOD) of R6G was 2 × 101 nM using the 70 nm QFIAAs. We anticipate that the QFIAA system can be used not only to screen reporter molecules for the NIR SERS bioimaging but also to detect analytes with background fluorescence that can be suppressed with NIR excitation wavelengths.
Collapse
Affiliation(s)
- Kristopher W Hoyt
- Department of Chemistry, SUNY Buffalo State University, 1300 Elmwood Ave., Buffalo, New York 14222, United States
| | - Ashleigh C Block
- Department of Chemistry, SUNY Buffalo State University, 1300 Elmwood Ave., Buffalo, New York 14222, United States
| | - Jillian Tung
- Department of Chemistry, SUNY Buffalo State University, 1300 Elmwood Ave., Buffalo, New York 14222, United States
| | - M Scott Goodman
- Department of Chemistry, SUNY Buffalo State University, 1300 Elmwood Ave., Buffalo, New York 14222, United States
| | - Igor K Lednev
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, New York 12222, United States
| | - Jinseok Heo
- Department of Chemistry, SUNY Buffalo State University, 1300 Elmwood Ave., Buffalo, New York 14222, United States
| |
Collapse
|
2
|
Sharma M, Kaur C, Singhmar P, Rai S, Sen T. DNA origami-templated gold nanorod dimer nanoantennas: enabling addressable optical hotspots for single cancer biomarker SERS detection. NANOSCALE 2024; 16:15128-15140. [PMID: 39058266 DOI: 10.1039/d4nr01110d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The convergence of DNA origami and surface-enhanced Raman spectroscopy (SERS) has opened a new avenue in bioanalytical sciences, particularly in the detection of single-molecule proteins. This breakthrough has enabled the development of advanced sensor technologies for diagnostics. DNA origami offers a highly controllable framework for the precise positioning of nanostructures, resulting in superior SERS signal amplification. In our investigation, we have successfully designed and synthesized DNA origami-based gold nanorod monomer and dimer assemblies. Moreover, we have evaluated the potential of dimer assemblies for label-free detection of a single biomolecule, namely epidermal growth factor receptor (EGFR), a crucial biomarker in cancer research. Our findings have revealed that the significant Raman amplification generated by DNA origami-assembled gold nanorod dimer nanoantennas facilitates the label-free identification of Raman peaks of single proteins, which is a prime aim in biomedical diagnostics. The present work represents a significant advancement in leveraging plasmonic nanoantennas to realize single protein SERS for the detection of various cancer biomarkers with single-molecule sensitivity.
Collapse
Affiliation(s)
- Mridu Sharma
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab-140306, India.
| | - Charanleen Kaur
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab-140306, India.
| | - Priyanka Singhmar
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab-140306, India.
| | - Shikha Rai
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab-140306, India.
| | - Tapasi Sen
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab-140306, India.
| |
Collapse
|
3
|
Oshima M, Moriwaki H. Photoreduction of Cr(VI) by TiO 2 adsorbed gold nanoparticles and perylene as a novel organic-inorganic hybrid photocatalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69122-69134. [PMID: 37129822 DOI: 10.1007/s11356-023-27283-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
The photoreduction of hexavalent chromium (Cr(VI)) using TiO2 adsorbed gold nanoparticles and perylene (Au/Pe/TiO2) as a novel organic-inorganic hybrid photocatalyst has been studied. The irradiation by a Xe lamp of a Cr (VI) aqueous solution (0.1 mM) with the Au/Pe/TiO2 powder resulted in the reduction of the Cr(VI). The rate of Cr(VI) reduction reached 98.3% by the irradiation for 60 min. The reaction rate constant using Au/Pe/TiO2 (0.0545 min-1) was higher than that of TiO2 (0.0218 min-1), Pe/TiO2 (0.0303 min-1), or Au/TiO2 (0.0393 min-1). Gold nanoparticles and perylene synergistically accelerated the TiO2 photocatalytic reaction. This result is due to the Z-scheme electron transfer between Pe and TiO2 and the suppression of charge recombination by the gold nanoparticles. The irradiation of sunlight also led to the photocatalytic reduction of the Cr(VI) by Au/Pe/TiO2. In addition, successive reduction of the Cr(VI) was achieved by using a column packed with the Au/Pe/TiO2 powder immobilized by calcium alginate gel.
Collapse
Affiliation(s)
- Mahiro Oshima
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, 386-8567, Japan
| | - Hiroshi Moriwaki
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, 386-8567, Japan.
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-15-1, Tokida, Ueda, 386-8567, Japan.
| |
Collapse
|
4
|
Yaman MY, Kalinin SV, Guye KN, Ginger DS, Ziatdinov M. Learning and Predicting Photonic Responses of Plasmonic Nanoparticle Assemblies via Dual Variational Autoencoders. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2205893. [PMID: 36942857 DOI: 10.1002/smll.202205893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The application of machine learning is demonstrated for rapid and accurate extraction of plasmonic particles cluster geometries from hyperspectral image data via a dual variational autoencoder (dual-VAE). In this approach, the information is shared between the latent spaces of two VAEs acting on the particle shape data and spectral data, respectively, but enforcing a common encoding on the shape-spectra pairs. It is shown that this approach can establish the relationship between the geometric characteristics of nanoparticles and their far-field photonic responses, demonstrating that hyperspectral darkfield microscopy can be used to accurately predict the geometry (number of particles, arrangement) of a multiparticle assemblies below the diffraction limit in an automated fashion with high fidelity (for monomers (0.96), dimers (0.86), and trimers (0.58). This approach of building structure-property relationships via shared encoding is universal and should have applications to a broader range of materials science and physics problems in imaging of both molecular and nanomaterial systems.
Collapse
Affiliation(s)
- Muammer Y Yaman
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Sergei V Kalinin
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Kathryn N Guye
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Maxim Ziatdinov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
5
|
Basak M, Mitra S, Gogoi M, Sinha S, Nemade HB, Bandyopadhyay D. Point-of-Care Biosensing of Urinary Tract Infections Employing Optoplasmonic Surfaces Embedded with Metal Nanotwins. ACS APPLIED BIO MATERIALS 2022; 5:5321-5332. [PMID: 36222059 DOI: 10.1021/acsabm.2c00720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report the synthesis of gold nanotwins (Au NTs) on a solid and transparent glass substrate which in turn has been employed for the selective optoplasmonic detection of Escherichia coli (EC) bacteria in human urine for the point-of-care diagnosis of urinary tract infections (UTIs). As compared to the single nanoparticle systems (Au NPs), the Au NTs show an enriched localized surface plasmon resonance (LSPR) due to the enhancement of the electric field under electromagnetic irradiation, e.g., photon, which helps in improving the limits of detection. For this purpose, initially a simple glass surface has been coated with Au NPs, with the help of the linker 3-aminopropyl-triethoxysilane - APTES. The surface has been linked further with another Au NP with the help of the 1,10-alkane-dithiol linker with two thiol ends, which eventually leads to the development of the optoplasmonic surface with Au NTs and an enhanced LSPR response. Subsequently, the EC specific aptamer has been chemically immobilized on the surface of Au NTs with the blocking of free sites via bovine serum albumin (BSA). Remarkably, Raman spectroscopy unfolds a 7-fold increase in the peak intensities with the Au NTs on the glass surface as compared to the surface coated with isolated Au NPs. The enhancement in the LSPR response of glass substrates coated with Au NTs and the EC specific aptamer has been further utilized for the selective and sensitive detection of UTIs. The results have been verified with the help of UV-visible spectroscopy to establish the utility of the proposed sensing methodology. An extensive interference study with other bacterial species unveils the selectivity and specificity of the proposed optoplasmonic sensors toward EC with a detection range of 5 × 103 to 107 CFU/mL. Intuitively, the method is more versatile in a sense that the sensor can be made specific to any other pathogens by simply changing the design of the aptamer. Finally, a low-cost, portable, and point-of-care optoplasmonic transduction setup is designed with a laser light illumination source, a sample holder, and a sensitive photodetector for the detection of UTIs in human urine.
Collapse
Affiliation(s)
- Mitali Basak
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India
| | - Shirsendu Mitra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India
| | - Mousumi Gogoi
- Altanostics Laboratories Private Limited, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India
| | - Swapnil Sinha
- Altanostics Laboratories Private Limited, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India
| | - Harshal B Nemade
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India
| | - Dipankar Bandyopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India.,Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India.,School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India
| |
Collapse
|
6
|
Gong T, Das CM, Yin MJ, Lv TR, Singh NM, Soehartono AM, Singh G, An QF, Yong KT. Development of SERS tags for human diseases screening and detection. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
The Aggregation of Destabilized Ag Triangular Nanoplates and Its Application in Detection of Thiram Residues. NANOMATERIALS 2022; 12:nano12132152. [PMID: 35807988 PMCID: PMC9268207 DOI: 10.3390/nano12132152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023]
Abstract
An aggregation or assembly of Ag triangular nanoplates (Ag TNPs) can cause dramatic changes in their optical properties, which is widely used in applications in the field of sensing. The assembly forms of nanoparticles are crucial for obtaining sensitive sensing signals, but it is unknown what kind of assembly dominates the aggregated Ag TNPs in aqueous solutions. Herein, using thiram-induced Ag TNP aggregation as a model, six different assembly models were established, including three planar (side-by-side, side-to-tip, and tip-to-tip) assemblies and three tridimensional (plane-to-plane, plane-to-tip, and plane-to-side) assemblies. The corresponding optical properties were then investigated. Both theoretical and experimental findings indicate that three-dimensional assemblies, especially plane-to-plane assembly, dominate the Ag TNPs aggregation solution, causing a blue shift of the absorption spectrum. Analysis of charge distribution patterns in Ag TNPs indicates that such a blue shift is caused by the electrostatic repulsive force in plane-to-plane assembly. Thus, we propose a simple colorimetric method for thiram detection using Ag TNPs as an indicator. The method exhibits a selective and sensitive response to thiram with a limit of detection of 0.13 μM in the range of 0.2–0.5 μM, as well as excellent performance in real samples like wheat.
Collapse
|
8
|
Kaur V, Sharma M, Sen T. DNA Origami-Templated Bimetallic Nanostar Assemblies for Ultra-Sensitive Detection of Dopamine. Front Chem 2021; 9:772267. [PMID: 35004609 PMCID: PMC8733555 DOI: 10.3389/fchem.2021.772267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
The abundance of hotspots tuned via precise arrangement of coupled plasmonic nanostructures highly boost the surface-enhanced Raman scattering (SERS) signal enhancements, expanding their potential applicability to a diverse range of applications. Herein, nanoscale assembly of Ag coated Au nanostars in dimer and trimer configurations with tunable nanogap was achieved using programmable DNA origami technique. The resulting assemblies were then utilized for SERS-based ultra-sensitive detection of an important neurotransmitter, dopamine. The trimer assemblies were able to detect dopamine with picomolar sensitivity, and the assembled dimer structures achieved SERS sensitivity as low as 1 fM with a limit of detection of 0.225 fM. Overall, such coupled nanoarchitectures with superior plasmon tunability are promising to explore new avenues in biomedical diagnostic applications.
Collapse
Affiliation(s)
| | | | - Tapasi Sen
- Institute of Nano Science and Technology, Mohali, India
| |
Collapse
|
9
|
Zvyagina AI, Ezhov AA, Kuz’mina NV, Kalinina MA. “Nonresonance” Enhancement of Optical Absorption in Organic Films with Plasmonic Particles. COLLOID JOURNAL 2021. [DOI: 10.1134/s1061933x21050148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Jimbo A, Nishikado Y, Imura K. Optical Field and Chemical Environment Near the Surface Modified Gold Nanoparticle Assembly Revealed by Two-Photon Induced Photoluminescence and Surface Enhanced Raman Scattering. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Atsuko Jimbo
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yui Nishikado
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Kohei Imura
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
11
|
Vahidzadeh E, Zeng S, Manuel AP, Riddell S, Kumar P, Alam KM, Shankar K. Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivity of CO 2 Photoreduction toward C 2+ Products. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7248-7258. [PMID: 33539093 DOI: 10.1021/acsami.0c21067] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cu/TiO2 is a well-known photocatalyst for the photocatalytic transformation of CO2 into methane. The formation of C2+ products such as ethane and ethanol rather than methane is more interesting due to their higher energy density and economic value, but the formation of C-C bonds is currently a major challenge in CO2 photoreduction. In this context, we report the dominant formation of a C2 product, namely, ethane, from the gas-phase photoreduction of CO2 using TiO2 nanotube arrays (TNTAs) decorated with large-sized (80-200 nm) Ag and Cu nanoparticles without the use of a sacrificial agent or hole scavenger. Isotope-labeled mass spectrometry was used to verify the origin and identity of the reaction products. Under 2 h AM1.5G 1-sun illumination, the total rate of hydrocarbon production (methane + ethane) was highest for AgCu-TNTA with a total CxH2x+2 rate of 23.88 μmol g-1 h-1. Under identical conditions, the CxH2x+2 production rates for Ag-TNTA and Cu-TNTA were 6.54 and 1.39 μmol g-1 h-1, respectively. The ethane selectivity was the highest for AgCu-TNTA with 60.7%, while the ethane selectivity was found to be 15.9 and 10% for the Ag-TNTA and Cu-TNTA, respectively. Adjacent adsorption sites in our photocatalyst develop an asymmetric charge distribution due to quadrupole resonances in large metal nanoparticles and multipole resonances in Ag-Cu heterodimers. Such an asymmetric charge distribution decreases adsorbate-adsorbate repulsion and facilitates C-C coupling of reaction intermediates, which otherwise occurs poorly in TNTAs decorated with small metal nanoparticles.
Collapse
Affiliation(s)
- Ehsan Vahidzadeh
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 Street, Edmonton, AB T6G 1H9, Canada
| | - Sheng Zeng
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 Street, Edmonton, AB T6G 1H9, Canada
| | - Ajay P Manuel
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 Street, Edmonton, AB T6G 1H9, Canada
| | - Saralyn Riddell
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 Street, Edmonton, AB T6G 1H9, Canada
| | - Pawan Kumar
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 Street, Edmonton, AB T6G 1H9, Canada
| | - Kazi M Alam
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 Street, Edmonton, AB T6G 1H9, Canada
- National Research Council Nanotechnology Research Centre, 11421 Saskatchewan Dr NW, Edmonton, AB T6G 2M9, Canada
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 Street, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
12
|
Jeong S, González G, Ho A, Nowell N, Austin LA, Hoballah J, Mubarak F, Kapur A, Patankar MS, Cramer DW, Krauledat P, Hansen WP, Evans CL. Plasmonic Nanoparticle-Based Digital Cytometry to Quantify MUC16 Binding on the Surface of Leukocytes in Ovarian Cancer. ACS Sens 2020; 5:2772-2782. [PMID: 32847358 PMCID: PMC7871419 DOI: 10.1021/acssensors.0c00567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although levels of the circulating ovarian cancer marker (CA125) can distinguish ovarian masses that are likely to be malignant and correlate with severity of disease, serum CA125 has not proved useful in general population screening. Recently, cell culture studies have indicated that MUC16 may bind to the Siglec-9 receptor on natural killer (NK) cells where it downregulates the cytotoxicity of NK cells, allowing ovarian cancer cells to evade immune surveillance. We present evidence that the presence of MUC16 can be locally visualized and imaged on the surface of peripheral blood mononuclear cells (PBMCs) in ovarian cancer via a novel "digital" cytometry technique that incorporates: (i) OC125 monoclonal antibody-conjugated gold nanoparticles as optical nanoprobes, (ii) a high contrast dark-field microscopy system to detect PBMC-bound gold nanoparticles, and (iii) a computational algorithm for automatic counting of these nanoparticles to estimate the quantity of surface-bound MUC16. The quantitative detection of our technique was successfully demonstrated by discriminating clones of the ovarian cancer cell line, OVCAR3, based on low, intermediate, and high expression levels of MUC16. Additionally, PBMC surface-bound MUC16 was tracked in an ovarian cancer patient over a 17 month period; the results suggest that the binding of MUC16 on the surface of immune cells may play an early indicator for recurrent metastasis 6 months before computational tomography-based clinical diagnosis. We also demonstrate that the levels of surface-bound MUC16 on PBMCs from five ovarian cancer patients were greater than those from five healthy controls.
Collapse
Affiliation(s)
- Sinyoung Jeong
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Germán González
- PNP Research Corporation, LLC, Drury, Massachusetts 01343, United States
| | - Alexander Ho
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Nicholas Nowell
- PNP Research Corporation, LLC, Drury, Massachusetts 01343, United States
| | - Lauren A Austin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Jawad Hoballah
- PNP Research Corporation, LLC, Drury, Massachusetts 01343, United States
| | - Fatima Mubarak
- PNP Research Corporation, LLC, Drury, Massachusetts 01343, United States
| | - Arvinder Kapur
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison 53705, United States
| | - Manish S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison 53705, United States
| | - Daniel W Cramer
- Ob/Gyn Epidemiology Center, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Petra Krauledat
- PNP Research Corporation, LLC, Drury, Massachusetts 01343, United States
| | - W Peter Hansen
- PNP Research Corporation, LLC, Drury, Massachusetts 01343, United States
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|