1
|
Wang F, Pan JQ, Shi RX, Ning R, Wu M. Diastereoselective Synthesis of Dihydrobenzofuran Spirooxindoles and Their Transformation into Benzofuroquinolinones by Ring Expansion of Oxindole Core. J Org Chem 2024; 89:5142-5147. [PMID: 38545874 DOI: 10.1021/acs.joc.3c02956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
A mild and efficient approach for the diastereoselective synthesis of dihydrobenzofuran spirooxindoles using 3-chlorooxindoles and imines is presented. This process involves a formal [4 + 1] annulation, yielding the product with excellent diastereoselectivity. Furthermore, a novel method for constructing benzofuroquinolinone scaffolds through the ring expansion of oxindoles has been established. This method involves a lactam ring expansion to the quinolinone skeleton. Besides, a one-pot procedure for creating benzofuroquinolinone scaffolds from 3-chlorooxindoles and imines is also provided.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Jia-Qi Pan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Ruo-Xian Shi
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Rui Ning
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Mingshu Wu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
| |
Collapse
|
2
|
Sankara CS, Namboothiri INN. Hauser-Kraus Annulation Initiated Multi-Cascade Reactions for Facile Access to Functionalized and Fused Oxazepines, Carbazoles and Phenanthridinediones. Chemistry 2024; 30:e202303517. [PMID: 37946675 DOI: 10.1002/chem.202303517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
The Hauser-Kraus (H-K) annulation of N-unsubstituted 3-olefinic oxindoles with 3-nucleophilic phthalides triggers a cascade of ring expansion and ring contraction reactions through several regioselective steps in one pot. While oxazepines were isolated in the presence of stoichiometric amounts of base at room temperature, carbazoles and phenanthridinediones were the products in the presence of excess base and microwave irradiation. Mechanistic studies guided by stepwise reactions and control experiments revealed that the isolable oxazepine intermediate, formed via ring expansion of the H-K adduct, is the key precursor to carbazole and phenanthridinedione via decarboxylative regioselective cyclizations.
Collapse
|
3
|
Luo J, Ma H, Wu K, Ao Y, Zhou W, Cai Q. An Alkyne-Isocyanide Cycloaddition/Boulton-Katritzky Rearrangement/Ring Expansion Reaction: Access to 9-Deazaguanines. Org Lett 2023; 25:2123-2128. [PMID: 36943758 DOI: 10.1021/acs.orglett.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
An alkyne-isocyanide [3 + 2] cycloaddition followed by a Boulton-Katritzky rearrangement and a ring expansion is demonstrated. Different from the typical Boulton-Katritzky rearrangement, which forms five-membered ring products, the rearrangement-ring expansion method provides a mild, efficient, and atom-economical access to fused 9-deazaguanine structures in high yields.
Collapse
Affiliation(s)
- Jianghao Luo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Haowen Ma
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Kaifu Wu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yunlin Ao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Wei Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Qian Cai
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
4
|
Zahra Sadeghian ZS, Bayat M. Synthesis of Heterocyclic Compounds Based on Isatins. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220430145522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isatin (1H-indole-2,3-diones) and its derivatives are a unique structure of heterocyclic molecules with great synthetic versatility and enormous biological activities of interest. Isatins have been broadly used as building blocks for the formation of a wide range of N-heterocycles. These applicable compounds undergo various reactions to form new heterocyclic compounds. The focus of this review is to summarize the recent literature and key reactions published about Pfitzinger, ring-opening, and ring expansion reactions of isatin and its derivatives during the period from 2018 to 2020. We believe this gives some insight and helps to bring about new ideas for further research.
Collapse
Affiliation(s)
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
5
|
Noor R, Zahoor AF, Naqvi SAR, ul Haq A, Akhtar R. Synthetic potential of ring expansions of 5-membered carbo- & heterocycles: A review. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2047728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rida Noor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Syed Ali Raza Naqvi
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Atta ul Haq
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rabia Akhtar
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
6
|
Alekseyev RS, Aliyev FN, Terenin VI. Methods for the synthesis of 3H-pyrrolo[2,3-c]quinolines. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-021-03036-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Dias do Espírito Santo R, Capitão RM, Santos Barbosa P, Simão dos Santos EF, Roque Duarte Correia C. The Chemistry and Biological Applications of 3
H‐
Pyrrolo[2,3‐
c
]quinolines and Marinoquinolines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rafael Dias do Espírito Santo
- Department of Organic Chemistry Chemistry Institute University of Campinas – UNICAMP Campinas São Paulo CEP 13083–970 Brazil
| | - Rebeca Monique Capitão
- Department of Organic Chemistry Chemistry Institute University of Campinas – UNICAMP Campinas São Paulo CEP 13083–970 Brazil
| | - Patrícia Santos Barbosa
- Department of Organic Chemistry Chemistry Institute University of Campinas – UNICAMP Campinas São Paulo CEP 13083–970 Brazil
| | - Eric Francisco Simão dos Santos
- Department of Organic Chemistry Chemistry Institute University of Campinas – UNICAMP Campinas São Paulo CEP 13083–970 Brazil
| | - Carlos Roque Duarte Correia
- Department of Organic Chemistry Chemistry Institute University of Campinas – UNICAMP Campinas São Paulo CEP 13083–970 Brazil
| |
Collapse
|
8
|
Song S, Li Y, Chen D, Wang X, Liu Y, Chen L. Synthesis of α‐Amidoacrylates Containing a 3‐Ylideneoxindole Motif. ChemistrySelect 2021. [DOI: 10.1002/slct.202100578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shuai Song
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 1333 Longteng Road Shanghai 201620 China
| | - Ya Li
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 1333 Longteng Road Shanghai 201620 China
| | - De‐Yin Chen
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 1333 Longteng Road Shanghai 201620 China
| | - Xiao‐Ping Wang
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 1333 Longteng Road Shanghai 201620 China
| | - Yong‐Liang Liu
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 1333 Longteng Road Shanghai 201620 China
| | - Ling‐Yan Chen
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 1333 Longteng Road Shanghai 201620 China
| |
Collapse
|
9
|
Ramu G, Tangella Y, Ambala S, Nagendra Babu B. Regioselective Ring Expansion of 3-Ylideneoxindoles with Tosyldiazomethane (TsDAM): A Metal-Free and Greener Approach for the Synthesis of Pyrazolo-[1,5- c]quinazolines. J Org Chem 2020; 85:5370-5378. [PMID: 32227895 DOI: 10.1021/acs.joc.0c00078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient, metal-free approach to access pyrazolo-[1,5-c]quinazolines with 3-ylideneoxindoles and tosyldiazomethane (TsDAM) under mild aqueous reaction conditions has been developed and the solvent involvement in the present reaction has also been explored for the first time. This greener approach involves 1,3-dipolar cycloaddition, regioselective ring expansion, followed by the elimination of tosyl group with aqueous base in a single operation, and the product can be isolated in high purity without column chromatographic separation. The method is also compatible with a large variety of functional groups, providing good to excellent yields in water, thus resulting in a decrease of environmental impact in the pharmaceutical industry.
Collapse
Affiliation(s)
- Gopathi Ramu
- Department of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Yellaiah Tangella
- Department of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Srinivas Ambala
- Department of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Bathini Nagendra Babu
- Department of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| |
Collapse
|
10
|
Osano M, Jhaveri DP, Wipf P. Formation of 6-Azaindoles by Intramolecular Diels-Alder Reaction of Oxazoles and Total Synthesis of Marinoquinoline A. Org Lett 2020; 22:2215-2219. [PMID: 32105087 DOI: 10.1021/acs.orglett.0c00417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new variant of the intramolecular Diels-Alder oxazole (IMDAO) cycloaddition that provides direct access to 6-azaindoles was developed. The IMDAO reaction was applied in a total synthesis of the aminophenylpyrrole-derived alkaloid marinoquinoline A, also featuring the use of a Curtius reaction for preparation of a 5-aminooxazole, a propargylic C,H-bond insertion, an in situ alkyne-allene isomerization, and a ruthenium-catalyzed cycloisomerization for benzene ring annulation to the 6-azaindole.
Collapse
Affiliation(s)
- Mana Osano
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Dishit P Jhaveri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|