Li X, Qin W. A novel dual-capability naphthalimide-based fluorescent probe for Fe
3+ ion detection and lysosomal tracking in living cells.
RSC Adv 2022;
12:24252-24259. [PMID:
36128528 PMCID:
PMC9413951 DOI:
10.1039/d2ra03688f]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
We design and synthesize a novel 1,8-naphthalimide-based fluorescent probe MNP that features the dual capabilities of tracking lysosomes in living HeLa cells and sensitively detecting Fe3+ ions in aqueous solution. The MNP is obtained by modifying the morpholine group with a lysosomal targeting function and the piperazine group with an Fe3+ ion recognition function on the 1,8-naphthalimide matrix. In the presence of Fe3+ ions, the MNP acts as a recognition ligand to coordinate with the central Fe3+ ion, and the protonated [MNPH]+ is eventually generated, in which significant fluorescence enhancements are observed due to the intramolecular photo-induced electron transfer (PET) process being blocked. The limit of detection of Fe3+ ions is as low as 65.2 nM. A cell imaging experiment shows that the MNP has low cytotoxicity and excellent lysosomal targeting ability. Therefore, the MNP offers a promising tool for lysosomal tracking and relevant life process research.
A newly prepared 1,8-naphthalimide-based fluorescent probe, MNP, allows the detection of Fe3+ ions in aqueous medium and lysosomal tracking in living cells. MNP was used in situ for the imaging of lysosomes in HeLa cells, a new strategy for lysosome-related medical diagnosis.![]()
Collapse