1
|
Al-Radadi NS. Physiochemical characterization of Glycyrrhiza mediated bioengineered palladium nanoparticles (PdNPs), their anti-proliferative and other biomedical applications. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2024; 36:103256. [DOI: 10.1016/j.jksus.2024.103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
GIROTRA V, KAUSHIK P, VAYA D. Exploring sustainable synthesis paths: a comprehensive review of environmentally friendly methods for fabricating nanomaterials through green chemistry approaches. Turk J Chem 2024; 48:703-725. [PMID: 39512746 PMCID: PMC11539912 DOI: 10.55730/1300-0527.3691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 10/24/2024] [Accepted: 05/29/2024] [Indexed: 11/15/2024] Open
Abstract
This comprehensive review delves into the burgeoning field of nanotechnology, where the synthesis of nanoparticles (NPs) is strategically tailored to specific applications. Embracing the principles of green chemistry, nanotechnology increasingly utilizes environmentally friendly materials, such as plant extracts or microorganisms, as capping or reducing agents and solvents in the synthesis process. Notably, plant-based synthesis demonstrates enhanced stability and faster rates compared to microorganisms. The synthesized materials exhibit unique properties ranging from antimicrobial and catalytic effects to antioxidant activities and they are finding applications across diverse fields. Green synthesis processes, characterized by mild conditions in terms of temperature and reagents, stand in stark contrast to traditional chemical synthesis methods. This review focuses on the synthesis of various metal and metal oxide NPs, including Ag, Au, Zn, Fe, Mg, Ti, Sn, Cu, Cd, Ni, Co, and Ag NPs and their oxides, using plant extracts and microorganisms. We provide a comprehensive analysis of the advantages, disadvantages, and applications associated with each synthesis method. Additionally, we explore the future prospects of green synthesis and its limitations and challenges, offering insights into its evolving role in nanotechnology.
Collapse
Affiliation(s)
- Vishu GIROTRA
- Department of Chemistry, Biochemistry, and Forensic Science, Amity School of Applied Science, Amity University, Haryana, Gurugram, India
| | - Pritam KAUSHIK
- Department of Chemistry, Biochemistry, and Forensic Science, Amity School of Applied Science, Amity University, Haryana, Gurugram, India
| | - Dipti VAYA
- Department of Chemistry, Biochemistry, and Forensic Science, Amity School of Applied Science, Amity University, Haryana, Gurugram, India
| |
Collapse
|
3
|
Seku K, Pejjai B, Osman AI, Hussaini SS, Al-Abri M, Swathi R, Hussain M, Kumar NS, Al-Fatesh AS, Bhagavanth Reddy G. Microwave-assisted synthesis of Limonia acidissima Groff gum stabilized palladium nanoparticles for colorimetric glucose sensing. J Colloid Interface Sci 2024; 659:718-727. [PMID: 38211489 DOI: 10.1016/j.jcis.2024.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/13/2024]
Abstract
Herein, we present a novel microwave-assisted method for the synthesis of palladium nanoparticles (PdNPs) supported by Limonia acidissima Groff tree extract gum. The synthesized PdNPs were characterized using various analytical techniques, including FTIR, SEM, TEM, UV-visible, and powder XRD analyses. TEM and XRD analysis confirmed that the synthesized LAG-PdNPs are highly crystalline nature spherical shapes with an average size diameter of 7-9 nm. We employed these gum-capped PdNPs to investigate their peroxidase-like activity for colorimetric detection of hydrogen peroxide (H2O2) and glucose. The oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2, catalyzed by PdNPs, produces oxidation products quantified at 652 nm using spectrophotometry. The catalytic activity of PdNPs was optimized with respect to temperature and pH. The developed method exhibited a linear range of detection from 1 to 50 µm, with detection limits of 0.35 µm for H2O2 and 0.60 µm for glucose.
Collapse
Affiliation(s)
- Kondaiah Seku
- Department of Engineering, College of Engineering and Technology, University of Technology and Applied Sciences, Shinas, Oman
| | - Babu Pejjai
- Department of Physics, Sri Venkateshwara College of Engineering, Karakambadi Road, Tirupati 517507, India
| | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK.
| | - Syed Sulaiman Hussaini
- Department of Engineering, College of Engineering and Technology, University of Technology and Applied Sciences, Shinas, Oman
| | - Mohammed Al-Abri
- Nanotechnology Research Center, Sultan Qaboos University, Muscat, Oman; Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
| | - R Swathi
- Department of Chemistry, KDR Govt Polytechnique College, Wanaparthi, Telangana 509103, India
| | - Mushtaq Hussain
- Department of Engineering, College of Engineering and Technology, University of Technology and Applied Sciences, Shinas, Oman
| | - Nadavala Siva Kumar
- Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Ahmed S Al-Fatesh
- Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - G Bhagavanth Reddy
- Department of Chemistry, PG Centre Wanaparthy, Palamuru University, Telangana State 509103, India.
| |
Collapse
|
4
|
Nudelman R, Zuarets S, Lev M, Gavriely S, Meshi L, Zucker I, Richter S. One-pot green bio-assisted synthesis of highly active catalytic palladium nanoparticles in porcine gastric mucin for environmental applications. NANOSCALE ADVANCES 2023; 5:6115-6122. [PMID: 37941943 PMCID: PMC10628991 DOI: 10.1039/d3na00385j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/05/2023] [Indexed: 11/10/2023]
Abstract
In this work, palladium nanoparticles were synthesized using one-pot synthesis utilizing porcine gastric mucin glycoproteins as reducing and capping agents. It is shown that the particles exhibited noticeable catalytic activity through both nitrophenol reduction and Suzuki-Miyaura coupling reactions. The catalytic performance was demonstrated with exceptionally high product yield, a fast reaction rate, and low catalyst use. The palladium-mucin composites obtained could be used in particle solution and as hydrogel catalysts to increase their reusability for at least ten reaction cycles with minimum loss in their catalytic effectiveness.
Collapse
Affiliation(s)
- Roman Nudelman
- Department of Materials Science and Engineering, University Center for Nanoscience and Nanotechnology, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University 69978 Tel-Aviv Israel
| | - Shir Zuarets
- Department of Materials Science and Engineering, University Center for Nanoscience and Nanotechnology, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University 69978 Tel-Aviv Israel
| | - Meiron Lev
- Department of Materials Science and Engineering, University Center for Nanoscience and Nanotechnology, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University 69978 Tel-Aviv Israel
| | - Shira Gavriely
- Department of Materials Science and Engineering, University Center for Nanoscience and Nanotechnology, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University 69978 Tel-Aviv Israel
- School of Mechanical Engineering, The Porter School of Environmental and Earth Sciences, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University 69978 Tel-Aviv Israel
| | - Louisa Meshi
- Department of Materials Engineering, Ben-Gurion University of the Negev PO Box 653 Beer-Sheva 84105 Israel
| | - Ines Zucker
- School of Mechanical Engineering, The Porter School of Environmental and Earth Sciences, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University 69978 Tel-Aviv Israel
| | - Shachar Richter
- Department of Materials Science and Engineering, University Center for Nanoscience and Nanotechnology, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University 69978 Tel-Aviv Israel
| |
Collapse
|
5
|
Azad A, Zafar H, Raza F, Sulaiman M. Factors Influencing the Green Synthesis of Metallic Nanoparticles Using Plant Extracts: A Comprehensive Review. PHARMACEUTICAL FRONTS 2023; 05:e117-e131. [DOI: 10.1055/s-0043-1774289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
AbstractMethods for nanoparticle (NP) synthesis of the past were costly, generating toxic compounds, which necessitates a reduction in toxic contamination associated with chemical and physical syntheses. Green nano synthesis using plant extracts has emerged as a sustainable alternative in nanotechnology with applications in various fields. Factors such as pH, extract and salt concentrations, temperature, solvent, biomolecules in plants, and reaction time significantly influence the quality and quantity of metallic NPs synthesized via green nanotechnology. This review highlights crucial factors affecting the size and shape of metallic NPs as the overall properties of the NPs are size- and shape-dependent. Current and future research in green nano synthesis holds promise for expanding our understanding of the parameters that control the synthesis, size, and shape of NPs. Further investigation is necessary to comprehend the impact of these parameters on the synthesis of metallic NPs using plant extracts, which is considered the most sustainable approach for large-scale production.
Collapse
Affiliation(s)
- Aisha Azad
- Department of Chemistry, Lahore Garrison University, Lahore, Pakistan
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Muhammad Sulaiman
- School of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
6
|
Velidandi A, Sarvepalli M, Gandam PK, Prashanth Pabbathi NP, Baadhe RR. Characterization, catalytic, and recyclability studies of nano-sized spherical palladium particles synthesized using aqueous poly-extract (turmeric, neem, and tulasi). ENVIRONMENTAL RESEARCH 2023; 228:115821. [PMID: 37019298 DOI: 10.1016/j.envres.2023.115821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/04/2023] [Accepted: 03/30/2023] [Indexed: 05/16/2023]
Abstract
Green synthesis of noble metal nanoparticles (NPs) has gained immense significance compared to other metal ions owing to their unique properties. Among them, palladium 'Pd' has been in the spotlight for its stable and superior catalytic activity. This work focuses on the synthesis of Pd NPs using the combined aqueous extract (poly-extract) of turmeric (rhizome), neem (leaves), and tulasi (leaves). The bio-synthesized Pd NPs were characterized to study its physicochemical and morphological features using several analytical techniques. Role of Pd NPs as nano-catalysts in the degradation of dyes (1 mg/2 mL stock solution) was evaluated in the presence of a strong reducing agent (sodium borohydride; SBH). In the presence of Pd NPs and SBH, maximum reduction of methylene blue (MB), methyl orange (MO), and rhodamine-B (Rh-B) dyes was observed under 20nullmin (96.55 ± 2.11%), 36nullmin (96.96 ± 2.24%), and 27nullmin (98.12 ± 1.33%), with degradation rate of 0.1789 ± 0.0273 min-1, 0.0926 ± 0.0102 min-1, and 0.1557 ± 0.0200 min-1, respectively. In combination of dyes (MB + MO + Rh-B), maximum degradation was observed under 50nullmin (95.49 ± 2.56%) with degradation rate of 0.0694 ± 0.0087 min-1. It was observed that degradation was following pseudo-first order reaction kinetics. Furthermore, Pd NPs showed good recyclability up to cycle 5 (72.88 ± 2.32%), cycle 9 (69.11 ± 2.19%) and cycle 6 (66.21 ± 2.72%) for MB, MO and Rh-B dyes, respectively. Whereas, up to cycle 4 (74.67 ± 0.66%) during combination of dyes. As Pd NPs showed good recyclability, they can be used for several cycles thus influencing the overall economics of the process.
Collapse
Affiliation(s)
- Aditya Velidandi
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India.
| | - Mounika Sarvepalli
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India.
| | - Pradeep Kumar Gandam
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India.
| | | | - Rama Raju Baadhe
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India.
| |
Collapse
|
7
|
Kumar A, Paliwal R, Gulbake A. Lentinan: An unexplored novel biomaterial in drug and gene delivery applications. J Control Release 2023; 356:316-336. [PMID: 36863692 DOI: 10.1016/j.jconrel.2023.02.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
Recently, lentinan (LNT) has been utilized for its diversified potential in research with an extended role from nutritional or medicinal applications to a novel biomaterial. LNT is a biocompatible, multifunctional polysaccharide employed as a pharmaceutical additive in engineering customized drug or gene carriers with an improved safety profile. Its triple helical structure containing hydrogen bonding offers more extraordinary binding sites for the attachments of dectin-1 receptors and polynucleotide sequences (poly(dA)). Hence, the diseases expressing dectin-1 receptors can be specifically targeted through so-designed LNT-engineered drug carriers. Gene delivery using poly(dA)-s-LNT complexes and composites has exhibited greater targetability and specificity. The achievement of such gene applications is assessed through the pH and redox potential of the extracellular cell membrane. The steric hindrance-acquiring behavior of LNT shows promise as a system stabilizer in drug carrier engineering. LNT shows viscoelastic gelling behavior temperature-dependently and therefore needs to explore more to meet topical disease applications. The immunomodulatory and vaccine adjuvant properties of LNT help in mitigating viral infections too. This review highlights the new role of LNT as a novel biomaterial, particularly in drug delivery and gene delivery applications. In addition, its importance in achieving various biomedical applications is also discussed.
Collapse
Affiliation(s)
- Ankaj Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam 781101, India
| | - Rishi Paliwal
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, MP 484887, India
| | - Arvind Gulbake
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam 781101, India.
| |
Collapse
|
8
|
Joudeh N, Saragliadis A, Koster G, Mikheenko P, Linke D. Synthesis methods and applications of palladium nanoparticles: A review. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1062608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Palladium (Pd) is a key component of many catalysts. Nanoparticles (NPs) offer a larger surface area than bulk materials, and with Pd cost increasing 5-fold in the last 10 years, Pd NPs are in increasing demand. Due to novel or enhanced physicochemical properties that Pd NPs exhibit at the nanoscale, Pd NPs have a wide range of applications not only in chemical catalysis, but also for example in hydrogen sensing and storage, and in medicine in photothermal, antibacterial, and anticancer therapies. Pd NPs, on the industrial scale, are currently synthesized using various chemical and physical methods. The physical methods require energy-intensive processes that include maintaining high temperatures and/or pressure. The chemical methods usually involve harmful solvents, hazardous reducing or stabilizing agents, or produce toxic pollutants and by-products. Lately, more environmentally friendly approaches for the synthesis of Pd NPs have emerged. These new approaches are based on the use of the reducing ability of phytochemicals and other biomolecules to chemically reduce Pd ions and form NPs. In this review, we describe the common physical and chemical methods used for the synthesis of Pd NPs and compare them to the plant- and bacteria-mediated biogenic synthesis methods. As size and shape determine many of the unique properties of Pd NPs on the nanoscale, special emphasis is given to the control of these parameters, clarifying how they impact current and future applications of this exciting nanomaterial.
Collapse
|
9
|
Morales Santos FJ, Piñón Castillo HA, QuinteroRamos A, Zaragoza Galán G, Duran R, Orrantia Borunda E. Comparison of catalytic activity and antimicrobial properties of palladium nanoparticles obtained by Aloe barbadensis and Glycine max extracts, and chemical synthesis. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Ma Z, Dong L, Zhang B, Liang B, Wang L, Ma G, Wang L. Lentinan stabilized bimetallic PdPt 3 dendritic nanoparticles with enhanced oxidase-like property for L-cysteine detection. Int J Biol Macromol 2022; 216:779-788. [PMID: 35902021 DOI: 10.1016/j.ijbiomac.2022.07.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 12/25/2022]
Abstract
The development of nanozymes with enhanced catalytic activity has been drawing great interest. Lentinan with special structure may be used to prepare bimetallic nanomaterials to enhance their catalytic activity. Herein, lentinan stabilized PdPt3 dendritic nanoparticles (PdPt3-LNT NDs) were prepared through reduction of Na2PdCl4 and K2PtCl4 with a molar ratio of 1:3 using lentinan as a biological template. PdPt3-LNT NDs had dendritic shape with size of 10.76 ± 1.82 nm. PdPt3-LNT NDs had the hydrodynamic size about 25.7 nm and the zeta potential between -1.4 mV and - 4.9 mV at different pH. Furthermore, PdPt3-LNT NDs catalyzed 3,3',5,5'-tetramethylbenzidine (TMB) to produce oxidized TMB, suggesting their oxidase-like property. The catalytic activity of PdPt3-LNT NDs was the highest when pH was 4 and the temperature was 40 °C. The catalytic mechanism was the generation of ·O2- and 1O2 from O2 catalyzed by PdPt3-LNT NDs. More importantly, L-cysteine detection method was set up based on the oxidase-like property of PdPt3-LNT NDs. This method had wide linear range for 0-200 μM and low detection limit for 3.099 μM. Taken together, PdPt3-LNT NDs have good potential applications in bio-related detection in the future.
Collapse
Affiliation(s)
- Ziyi Ma
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Le Dong
- Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Bingjie Zhang
- Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Bo Liang
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao, 066004, China.
| | - Liqiu Wang
- Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Guanglong Ma
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton SO166YD, UK
| | - Longgang Wang
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao, 066004, China; Key Laboratory of Applied Chemistry, Nano-biotechnology Key Lab of Hebei Province, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
11
|
Li R, Dong L, Liang Y, Cui Y, Ji X, Xiao H, Gao S, Wang L. Palladium Nanoparticles Stabilized by Lentinan with Enhanced Peroxidase‐like Activity for Sensitive Detection of H
2
O
2. ChemistrySelect 2022. [DOI: 10.1002/slct.202200247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ruyu Li
- Key Laboratory of Applied Chemistry Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse Nano-biotechnology Key Lab of Hebei Province Yanshan University Qinhuangdao 066004 China
| | - Le Dong
- Key Laboratory of Applied Chemistry Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse Nano-biotechnology Key Lab of Hebei Province Yanshan University Qinhuangdao 066004 China
| | - Ying Liang
- Key Laboratory of Applied Chemistry Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse Nano-biotechnology Key Lab of Hebei Province Yanshan University Qinhuangdao 066004 China
| | - Yanshuai Cui
- Hebei University of Environmental Engineering Qinhuangdao 066102 China
| | - Xianbing Ji
- Hebei University of Environmental Engineering Qinhuangdao 066102 China
| | - Haiyan Xiao
- Key Laboratory of Applied Chemistry Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse Nano-biotechnology Key Lab of Hebei Province Yanshan University Qinhuangdao 066004 China
| | - Shoubei Gao
- Key Laboratory of Applied Chemistry Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse Nano-biotechnology Key Lab of Hebei Province Yanshan University Qinhuangdao 066004 China
| | - Longgang Wang
- Key Laboratory of Applied Chemistry Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse Nano-biotechnology Key Lab of Hebei Province Yanshan University Qinhuangdao 066004 China
| |
Collapse
|
12
|
Sonochemical decoration of palladium on graphene carpet for electrochemical methanol oxidation. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Seku K, Bhagavanth Reddy G, Hussaini SS, Pejjai B, Hussain M, Reddy DM, Khazaleh MAK, Mangatayaru G. An efficient biosynthesis of palladium nanoparticles using Bael gum and evaluation of their catalytic and antibacterial activity. Int J Biol Macromol 2022; 209:912-922. [PMID: 35447260 DOI: 10.1016/j.ijbiomac.2022.04.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 11/05/2022]
Abstract
We report a facile microwave-assisted synthesis of palladium nanoparticles (PdNPs) using Bael gum (BG) and it's carboxymethylated (CMBG) derivative. The prepared nanoparticles (BG@PdNPs and CMBG@PdNPs) were evaluated for antibacterial and catalytic activity in the reduction of organic dye pollutants. The developed synthetic method is simple, low cost and eco-friendly, wherein the process requires no additional reducing or capping agents. The CMBG was prepared via etherification reaction between BG and monochloroacetic acid using Williamson synthesis method. The PdNPs were synthesized using BG and CMBG as stabilizers and reducing agents. The PdNPs were found to be well dispersed spherical, with the crystalline size of the order of 7-21 nm. The results showed that the CMBG@PdNPs were smaller in size (7 ± 2 nm) than those capped with BG@PdNPs (10 ± 2 nm). The catalytic ability of CMBG@PdNPs was examined for the reduction of Methyl Orange (MO), Methyl Red(MR), and Rhodamine-B (RhB) in the presence of NaBH4. The results showed that CMBG@PdNPs exhibited a higher catalytic ability than BG@PdNPs. Moreover, it was found that CMBG@PdNPs served several times as a retrievable and reusable catalyst which is stable even after six cycles of reaction. The CMBG@PdNPs and BG@PdNPs showed excellent antibacterial activity. The results indicate that CMBG@PdNPs have greater potential application as a catalyst in the reduction of organic pollutants and antibacterial activity.
Collapse
Affiliation(s)
- Kondaiah Seku
- Department of Engineering, Civil Section (Applied Sciences - Chemistry), University of Technology and Applied Sciences-Shinas, Al-Aqur, Shinas 324, Oman..
| | - G Bhagavanth Reddy
- Department of Chemistry, Palamuru University, Mahabubnagar, Telangana 509001, India
| | - Syed Sulaiman Hussaini
- Department of Engineering, Civil Section (Applied Sciences - Chemistry), University of Technology and Applied Sciences-Shinas, Al-Aqur, Shinas 324, Oman
| | - Babu Pejjai
- Department of Science and Humanities, Sri Venkateshwara Engineering College, Karakambadi Road, Tirupati, Andhra Pradesh 517507, India
| | - Mushtaq Hussain
- Department of Engineering, Civil Section (Applied Sciences - Chemistry), University of Technology and Applied Sciences-Shinas, Al-Aqur, Shinas 324, Oman
| | - D Madhusudan Reddy
- Department of Microbiology, Palamuru University, Mahbubnagar, Telangana 509001, India
| | | | - Girija Mangatayaru
- Department of Chemistry, Palamuru University, Mahabubnagar, Telangana 509001, India.
| |
Collapse
|
14
|
Green synthesis of palladium nanoparticles and investigation of their catalytic activity for methylene blue, methyl orange and rhodamine B degradation by sodium borohydride. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02185-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Green Synthesis of Metal and Metal Oxide Nanoparticles: Principles of Green Chemistry and Raw Materials. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7110145] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increased request for metal and metal oxide nanoparticles nanoparticles has led to their large-scale production using high-energy methods with various toxic solvents. This cause environmental contamination, thus eco-friendly “green” synthesis methods has become necessary. An alternative way to synthesize metal nanoparticles includes using bioresources, such as plants and plant products, bacteria, fungi, yeast, algae, etc. “Green” synthesis has low toxicity, is safe for human health and environment compared to other methods, meaning it is the best approach for obtaining metal and metal oxide nanoparticles. This review reveals 12 principles of “green” chemistry and examples of biological components suitable for “green” synthesis, as well as modern scientific research of eco-friendly synthesis methods of magnetic and metal nanoparticles. Particularly, using extracts of green tea, fruits, roots, leaves, etc., to obtain Fe3O4 NPs. The various precursors as egg white (albumen), leaf and fruit extracts, etc., can be used for the „green” synthesis of spinel magnetic NPs. “Green” nanoparticles are being widely used as antimicrobials, photocatalysts and adsorbents. “Green” magnetic nanoparticles demonstrate low toxicity and high biocompatibility, which allows for their biomedical application, especially for targeted drug delivery, contrast imaging and magnetic hyperthermia applications. The synthesis of silver, gold, platinum and palladium nanoparticles using extracts from fungi, red algae, fruits, etc., has been described.
Collapse
|
16
|
Abstract
Among transition metal nanoparticles, palladium nanoparticles (PdNPs) are recognized for their high catalytic activity in a wide range of organic transformations that are of academic and industrial importance. The increased interest in environmental issues has led to the development of various green approaches for the preparation of efficient, low-cost and environmentally sustainable Pd-nanocatalysts. Environmentally friendly solvents, non-toxic reducing reagents, biodegradable capping and stabilizing agents and energy-efficient synthetic methods are the main aspects that have been taken into account for the production of Pd nanoparticles in a green approach. This review provides an overview of the fundamental approaches used for the green synthesis of PdNPs and their catalytic application in sustainable processes as cross-coupling reactions and reductions with particular attention afforded to the recovery and reuse of the palladium nanocatalyst, from 2015 to the present.
Collapse
|
17
|
Malik MA, Alshehri AA, Abomuti MA, Danish EY, Patel R. Bioengineered Matricaria recutita Extract-Assisted Palladium Nanoparticles for the Congo Red Dye Degradation and Catalytic Reduction of 4-Nitrophenol to 4-Aminophenol. TOXICS 2021; 9:103. [PMID: 34064502 PMCID: PMC8148003 DOI: 10.3390/toxics9050103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 11/19/2022]
Abstract
The green chemistry method is the preferred approach for synthesizing metal and metal oxide nanoparticles because of its low toxicity, environmental friendliness, feasibility, and safety to human health compared with other chemical or physical methods. The present work reports the phytogenic synthesis of palladium nanoparticles (PdNPs) using an aqueous extract of Matricaria recutita (Chamomile). The phytochemical-mediated synthesis of PdNPs is an economical and eco-friendly approach without using toxic elements as reducing and capping or stabilizing agents. The UV-visible spectroscopic characterization was initially used to confirm the preparation of PdNPs using an aqueous extract of M. recutita flowers as a bioreductant for the reduction of Pd2+ to Pd0 without using any extra capping and reducing agents. The appearance of surface plasmon resonance (SPR) peak at 286 nm confirmed the formation of M. recutita extract-based PdNPs. Furthermore, the PdNPs were characterized by TEM, SEM, EDX, XRD, XPS, and FTIR to confirm their proper synthesis. The thermogravimetric analysis (TGA) was implemented to interpret the decomposition pattern and thermal stability of as-synthesized PdNPs. The biosynthesized PdNPs were further applied as a nanocatalyst in degradation of an azo dye Congo red (CR) in the presence of NaBH4. The catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) was also investigated in the presence of NaBH4. All the catalytic reactions were performed in water, and no significant loss in catalytic activity was observed after recovery and reusability of the biosynthesized PdNPs.
Collapse
Affiliation(s)
- Maqsood Ahmad Malik
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.A.A.); (M.A.A.); (E.Y.D.)
| | - Abdulmohsen Ali Alshehri
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.A.A.); (M.A.A.); (E.Y.D.)
| | - May Abdullah Abomuti
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.A.A.); (M.A.A.); (E.Y.D.)
| | - Ekram Y. Danish
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.A.A.); (M.A.A.); (E.Y.D.)
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| |
Collapse
|
18
|
Green synthesis of palladium nanoparticles: Preparation, characterization, and investigation of antioxidant, antimicrobial, anticancer, and DNA cleavage activities. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6272] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Duan Y, Ma Y, Xie Y, Li D, Deng D, Zhang C, Yang Y. Preparation of PdAuCu/C as a Highly Active Catalyst for the Reduction of 4‐Nitrophenol by Controlling the Deposition of Noble Metals. Chem Asian J 2020. [DOI: 10.1002/asia.202001241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ying Duan
- Henan Key Laboratory of Function-Oriented Porous Material, College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471934 P. R. China
- College of Food and Drug Luoyang Normal University Luoyang 471934 P. R. China
| | - Yangyang Ma
- College of Food Science and Technology Henan Agricultural University No.95 Wenhua Road Zhengzhou 450002 P. R. China
| | - Yanfu Xie
- College of Food and Drug Luoyang Normal University Luoyang 471934 P. R. China
| | - Dongmi Li
- Henan Key Laboratory of Function-Oriented Porous Material, College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471934 P. R. China
| | - Dongsheng Deng
- Henan Key Laboratory of Function-Oriented Porous Material, College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471934 P. R. China
| | - Chi Zhang
- Henan Key Laboratory of Function-Oriented Porous Material, College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471934 P. R. China
| | - Yanliang Yang
- Henan Key Laboratory of Function-Oriented Porous Material, College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471934 P. R. China
| |
Collapse
|
20
|
Beheshti M, Kakooei S, Ismail MC, Shahrestani S. Investigation of CO2 electrochemical reduction to syngas on Zn/Ni-based electrocatalysts using the cyclic voltammetry method. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|