Kumar S, Sharma B, Mehra V, Kumar V. Recent accomplishments on the synthetic/biological facets of pharmacologically active 1H-1,2,3-triazoles.
Eur J Med Chem 2020;
212:113069. [PMID:
33388593 DOI:
10.1016/j.ejmech.2020.113069]
[Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022]
Abstract
The continuous demand of medicinally important scaffolds has prompted the synthetic chemists to identify simple and efficient routes for their synthesis. 1H-1,2,3-triazole, obtained by highly versatile, efficacious and selective "Click Reaction" has become a synthetic/medicinal chemist's favorite not only because of its ability to mimic different functional groups but also due to enhancement in the targeted biological activities. Triazole ring has also been shown to play a critical role in biomolecular mimetics, fragment-based drug design, and bioorthogonal methodologies. In addition, the availability of triazole containing drugs such as fluconazole, furacyclin, etizolam, voriconazole, triozolam etc. in market has underscored the potential of this biologically enriched core in expediting development of new scaffolds. The present review, therefore, is an attempt to highlight the recent synthetic/biological advancements in triazole derivatives that could facilitate the in-depth understanding of its role in the drug discovery process.
Collapse