1
|
Ou X, Li K, Liu M, Song J, Zuo Z, Guo Y. EXPAR for biosensing: recent developments and applications. Analyst 2024; 149:4135-4157. [PMID: 39034763 DOI: 10.1039/d4an00609g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Emerging as a promising novel amplification technique, the exponential amplification reaction (EXPAR) offers significant advantages due to its potent exponential amplification capability, straightforward reaction design, rapid reaction kinetics, and isothermal operation. The past few years have witnessed swift advancements and refinements in EXPAR-based technologies, with numerous high-performance biosensing systems documented. A deeper understanding of the EXPAR mechanism has facilitated the proposal of novel strategies to overcome limitations inherent to traditional EXPAR. Furthermore, the synergistic integration of EXPAR with diverse amplification methodologies, including the use of a CRISPR/Cas system, metal nanoparticles, aptamers, alternative isothermal amplification techniques, and enzymes, has significantly bolstered analytical efficacy, aiming to enhance specificity, sensitivity, and amplification efficiency. This comprehensive review presents a detailed exposition of the EXPAR mechanism and analyzes its primary challenges. Additionally, we summarize the latest research advancements in the biomedical field concerning the integration of EXPAR with diverse amplification technologies for sensing strategies. Finally, we discuss the challenges and future prospects of EXPAR technology in the realms of biosensing and clinical applications.
Collapse
Affiliation(s)
- Xinyi Ou
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China.
- Department of Laboratory Medicine, The Affiliated Hospital, Southwest Medical University, PR China
| | - Kunxiang Li
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China.
- Department of Laboratory Medicine, The Affiliated Hospital, Southwest Medical University, PR China
| | - Miao Liu
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China.
| | - Jiajun Song
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China.
- Department of Laboratory Medicine, The Affiliated Hospital, Southwest Medical University, PR China
| | - Zhihua Zuo
- Department of Clinical Laboratory, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan, 637003, PR China.
| | - Yongcan Guo
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, PR China.
- Department of Laboratory Medicine, The Affiliated Hospital, Southwest Medical University, PR China
| |
Collapse
|
2
|
Du Y, Qi Y, Kang Q, Yang X, Xiang H. A fluorescent sensor based on strand displacement amplification and primer exchange reaction coupling for label-free detection of miRNA. Anal Chim Acta 2023; 1279:341780. [PMID: 37827678 DOI: 10.1016/j.aca.2023.341780] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 10/14/2023]
Abstract
MicroRNAs (miRNAs) are closely associated with human disease occurrence, including cancers, diabetes, inflammation, heart diseases, and viral infections, and their rapid and accurate detection is vital for the diagnosis and treatment of these diseases. Based on one-step reaction of strand displacement amplification (SDA) and primer exchange reaction (PER), a label-free and highly sensitive miRNA-21 detection strategy was developed. In this strategy, the target miRNA-21 binds directly to the hairpin template, triggering the SDA reaction and generating a large number of single strand DNAs as primers for PER amplification. With the help of polymerase, plenty of G-quadruplex fragments of different lengths were accumulated, and the organic dye thioflavin T selectively binds to these G-quadruplex fragments to produce a strong fluorescent signal. There is a wide detection range in this method, miRNA-21 can be detected in the range of 10 fM - 1 nM, the detection limit is low (1.25 fM). This method has good specificity and can effectively distinguish single-base mismatches of miRNA. In addition, the versatility of the method was validated by changing the target recognition site of SDA template.
Collapse
Affiliation(s)
- Yumin Du
- Key Laboratory of Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yinxiao Qi
- Key Laboratory of Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Qi Kang
- Department of Nuclear Medicine, Huaihe Hospital, Henan University, PR China
| | - Xiaoyan Yang
- Qilu Hospital of Shandong University Dezhou Hospital, Shandong, PR China
| | - Hua Xiang
- Key Laboratory of Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
3
|
Gao J, Liu Q, Liu W, Jin Y, Li B. Comparative evaluation and design of a G-triplex/thioflavin T-based molecular beacon. Analyst 2021; 146:2567-2573. [PMID: 33899063 DOI: 10.1039/d1an00252j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Both G-quadruplex (G4) and G-triplex (G3) can bind thioflavin T (ThT) to light up the fluorescence of ThT. G4/ThT and G3/ThT can be used as fluorescent indicators to construct a label-free molecular beacon (MB). In this work, we present a comparative perspective of G3/ThT-based MB and G4/ThT-based MB. The results showed that the G3/ThT-based MB had higher sensitivity and faster response speed than the G4/ThT-based MB. Furthermore, we systematically studied the effect of stem length and varying pairs on the response of the G3/ThT-based MB, and then proposed one rational design of the G3/ThT-based MB. This work demonstrates that the shorter G3 is more suitable for constructing the MB stem. This present work opens a promising way to develop a sensitive, simple and homogeneous biosensing method.
Collapse
Affiliation(s)
- Jingru Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Qiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Wei Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Yan Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Baoxin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
4
|
Abstract
Selective and sensitive detection of nucleic acid biomarkers is of great significance in early-stage diagnosis and targeted therapy. Therefore, the development of diagnostic methods capable of detecting diseases at the molecular level in biological fluids is vital to the emerging revolution in the early diagnosis of diseases. However, the vast majority of the currently available ultrasensitive detection strategies involve either target/signal amplification or involve complex designs. Here, using a p53 tumor suppressor gene whose mutation has been implicated in more than 50% of human cancers, we show a background-free ultrasensitive detection of this gene on a simple platform. The sensor exhibits a relatively static mid-FRET state in the absence of a target that can be attributed to the time-averaged fluorescence intensity of fast transitions among multiple states, but it undergoes continuous dynamic switching between a low- and a high-FRET state in the presence of a target, allowing a high-confidence detection. In addition to its simple design, the sensor has a detection limit down to low femtomolar (fM) concentration without the need for target amplification. We also show that this sensor is highly effective in discriminating against single-nucleotide polymorphisms (SNPs). Given the generic hybridization-based detection platform, the sensing strategy developed here can be used to detect a wide range of nucleic acid sequences enabling early diagnosis of diseases and screening genetic disorders.
Collapse
Affiliation(s)
- Anoja Megalathan
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Kalani M Wijesinghe
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|