1
|
Chang L, Gan R, Huang X, Zheng D, Su C, Lu Y, Feng Y. Application of novel nanomaterials with dual functions of antimicrobial and remineralization in mouthwashes. Sci Rep 2024; 14:29027. [PMID: 39578530 PMCID: PMC11584742 DOI: 10.1038/s41598-024-80703-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/21/2024] [Indexed: 11/24/2024] Open
Abstract
The study aims to improve the antimicrobial and remineralization-promoting properties of mouthwash by synthesizing novel Ag/ZnO/Oyster Shells nanocomposites and evaluating their anti-caries properties and biosafety in vitro and in vivo, so as to reduce the incidence of caries. The antimicrobial properties of the synthesized Ag/ZnO/Oyster Shell nanocomposites were examined by bacterial inhibition zone, minimum inhibitory concentration, minimum bactericidal concentration, fluorescence staining and scanning electron microscopy. The potential of the materials to promote remineralization of demineralized enamel was detected by scanning electron microscopy, surface microhardness and depth of hard tissue defects, and laser confocal electron microscopy analysis. The synthesized materials were then incorporated into mouthwash, and their effects on antimicrobial properties, remineralization-promoting properties were evaluated. Furthermore, an oral mucosal contact model was established to assess local irritation and systemic effects. The results showed that the novel Ag/ZnO/Oyster Shell nanocomposites possessed strong antimicrobial activity, remineralization-promoting ability and good biosafety, and the mouthwash containing Ag/ZnO/Oyster Shell possessed strong antimicrobial performance and remineralization-promoting ability, and showed no obvious abnormalities in local mucosal tissues, blood indices, and histopathology of the liver and kidneys in the oral exposure model of the SD rats. These findings indicate that Ag/ZnO/Oyster shell incorporated into mouthwash has strong antimicrobial activity, good remineralization-promoting properties and good biosafety in vivo. It is therefore expected to be used in clinical applications.
Collapse
Affiliation(s)
- Lin Chang
- Department of Rende Road, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Ruihuan Gan
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Xiaoyu Huang
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Chen Su
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Youguang Lu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China.
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China.
| | - Yan Feng
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China.
- Fujian Key Laboratory of Oral Diseases, School of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China.
| |
Collapse
|
2
|
Yu H, Liu Z, Chen L, He X, Weng Y, Li W, Zheng X, Pan Q, Zhang R, Zhang X, Wu W. Transforming Natural Eggshell and Diatomite into Bioactive Calcium Silicate Material for Bone Regeneration. ACS OMEGA 2024; 9:19440-19450. [PMID: 38708237 PMCID: PMC11064024 DOI: 10.1021/acsomega.4c00904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/02/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024]
Abstract
Calcium silicate (CS), a new and important bioceramic bone graft material, is prepared by using eggshells, which have a porous structure and are rich in calcium ions. Furthermore, the preparation of new CS materials using eggshells and diatomaceous earth minimizes their negative impact on the environment. In this study, we prepared CS materials using a high-temperature calcination method. The composition of the material was demonstrated by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis. Scanning electron microscopy (SEM) analysis confirmed the porous structure of the CS material. We also introduced ZnO to prepare ZnO-CS with antibacterial properties and showed that ZnO-CS exhibits excellent antibacterial effects through in vitro antibacterial experiments. Subsequent in vitro mineralization experiments demonstrated that ZnO-CS promoted the formation of a hydroxyapatite layer. Furthermore, in vitro cytotoxicity experiments demonstrated that ZnO-CS had very good biosafety and promoted cell proliferation. These findings were confirmed through subsequent cell proliferation experiments. Our results indicate that the novel ZnO-CS is a promising candidate for bone tissue engineering.
Collapse
Affiliation(s)
- Haiming Yu
- Department
of Spinal Surgery, The Second Clinical Medical College of Fujian Medical
University, The Second Affiliated Hospital
of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Zhihua Liu
- Department
of Spinal Surgery, The Second Clinical Medical College of Fujian Medical
University, The Second Affiliated Hospital
of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Lingying Chen
- Department
of Spinal Surgery, The Second Clinical Medical College of Fujian Medical
University, The Second Affiliated Hospital
of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Xiaoyu He
- Department
of Spinal Surgery, The Second Clinical Medical College of Fujian Medical
University, The Second Affiliated Hospital
of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Yiyong Weng
- Department
of Spinal Surgery, The Second Clinical Medical College of Fujian Medical
University, The Second Affiliated Hospital
of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Weizhe Li
- Department
of Spinal Surgery, The Second Clinical Medical College of Fujian Medical
University, The Second Affiliated Hospital
of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Xiaozhi Zheng
- Department
of Spinal Surgery, The Second Clinical Medical College of Fujian Medical
University, The Second Affiliated Hospital
of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Qunlong Pan
- Department
of Spinal Surgery, The Second Clinical Medical College of Fujian Medical
University, The Second Affiliated Hospital
of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Rongmou Zhang
- Department
of Spinal Surgery, The Second Clinical Medical College of Fujian Medical
University, The Second Affiliated Hospital
of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Xiaoyan Zhang
- Key
Laboratory of Chemical Materials and Green Nanotechnology, College
of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Wenhua Wu
- Department
of Spinal Surgery, The Second Clinical Medical College of Fujian Medical
University, The Second Affiliated Hospital
of Fujian Medical University, Quanzhou, Fujian 362000, China
| |
Collapse
|
3
|
Widakdo J, Chen TM, Lin MC, Wu JH, Lin TL, Yu PJ, Hung WS, Lee KR. Evaluation of the Antibacterial Activity of Eco-Friendly Hybrid Composites on the Base of Oyster Shell Powder Modified by Metal Ions and LLDPE. Polymers (Basel) 2022; 14:polym14153001. [PMID: 35893965 PMCID: PMC9332488 DOI: 10.3390/polym14153001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Transforming biological waste into high-value-added materials is currently attracting extensive research interest in the medical and industrial treatment fields. The design and use of new antibacterial systems are urgently needed. In this study, we used discarded oyster shell powder (OSP) to prepare calcium oxide (CaO). CaO was mixed with silver (Ag), zinc (Zn), and copper (Cu) ions as a controlled release and antibacterial system to test the antibacterial activity. The inhibition zones of various modified metals were between 22 and 29 mm for Escherichia coli (E. coli) and between 21 and 24 mm for Staphylococcus aureus (S. aureus). In addition, linear low-density polyethylene (LLDPE) combined with CaO and metal ion forms can be an excellent alternative to a hybrid composite. The strength modulus at 1% LLDPE to LLDPE/CaO Ag increased from 297 to 320 MPa. In addition, the antimicrobial activity of LLDPE/CaO/metal ions against E. coli had an antibacterial effect of about 99.9%. Therefore, this hybrid composite material has good potential as an antibacterial therapy and biomaterial suitable for many applications.
Collapse
Affiliation(s)
- Januar Widakdo
- Advanced Membrane Materials Research Center, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106335, Taiwan;
| | - Tsan-Ming Chen
- Carbide Division, Formosa Plastics Corporation, Taipei 105076, Taiwan; (T.-M.C.); (M.-C.L.); (J.-H.W.); (T.-L.L.); (P.-J.Y.)
| | - Meng-Chieh Lin
- Carbide Division, Formosa Plastics Corporation, Taipei 105076, Taiwan; (T.-M.C.); (M.-C.L.); (J.-H.W.); (T.-L.L.); (P.-J.Y.)
| | - Jia-Hao Wu
- Carbide Division, Formosa Plastics Corporation, Taipei 105076, Taiwan; (T.-M.C.); (M.-C.L.); (J.-H.W.); (T.-L.L.); (P.-J.Y.)
| | - Tse-Ling Lin
- Carbide Division, Formosa Plastics Corporation, Taipei 105076, Taiwan; (T.-M.C.); (M.-C.L.); (J.-H.W.); (T.-L.L.); (P.-J.Y.)
| | - Pin-Ju Yu
- Carbide Division, Formosa Plastics Corporation, Taipei 105076, Taiwan; (T.-M.C.); (M.-C.L.); (J.-H.W.); (T.-L.L.); (P.-J.Y.)
| | - Wei-Song Hung
- Advanced Membrane Materials Research Center, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106335, Taiwan;
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan University, Chungli 32023, Taiwan
- Correspondence: (W.-S.H.); (K.-R.L.); Tel.: +886-2-2733-3141 (K.-R.L.)
| | - Kueir-Rarn Lee
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan University, Chungli 32023, Taiwan
- Correspondence: (W.-S.H.); (K.-R.L.); Tel.: +886-2-2733-3141 (K.-R.L.)
| |
Collapse
|
4
|
Ashrafi G, Nasrollahzadeh M, Jaleh B, Sajjadi M, Ghafuri H. Biowaste- and nature-derived (nano)materials: Biosynthesis, stability and environmental applications. Adv Colloid Interface Sci 2022; 301:102599. [PMID: 35066374 DOI: 10.1016/j.cis.2022.102599] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/22/2022]
Abstract
Due to the environmental pollution issues and the supply of drinking/clean water, removal of both inorganic and organic (particularly dyes, nitroarenes, and heavy metals) to non-dangerous products and useful compounds are very important transformations. The deployment of sustainable and eco-friendly nanomaterials with exceptional structural and unique features such as high efficiency and stability/recyclability, high surface/volume ratio, low-cost production routes has become a priority; nonetheless, numerous significant challenges/restrictions still remained unresolved. The immobilization of green synthesized metal nanoparticles (NPs) on the natural materials and biowaste generated templates have been analyzed widely as a greener approach due to their environmentally friendly preparation methods, earth-abundance, cost-effectiveness with low energy consumption, biocompatibility, as well as adjustability in various cases of biomolecules as bioreducing agents. Natural and biowaste materials are widely considered as important sources to fabricate greener and biosynthesized types of metal, metal oxide, and metal sulfide nanomaterials using plant extracts. Integrating green synthesized nanoparticles with various biotemplates offers new practical composites for mitigating environmental challenges. In this review, degradation of dyes, reduction of toxic nitrophenols, absorption of heavy metals, and other hazardous/toxic environmental pollutants from contaminated water bodies using biowaste- and nature-derived nanomaterials are highlighted.
Collapse
Affiliation(s)
- Ghazaleh Ashrafi
- Department of Physics, Bu-Ali Sina University, 65174 Hamedan, Iran
| | | | - Babak Jaleh
- Department of Physics, Bu-Ali Sina University, 65174 Hamedan, Iran.
| | - Mohaddeseh Sajjadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
5
|
Huang J, Sui X, Qi H, Lan X, Liu S, Zhang L. Zwitterionic peptide-functionalized highly dispersed carbon nanotubes for efficient wastewater treatment. J Mater Chem B 2022; 10:2661-2669. [PMID: 35043824 DOI: 10.1039/d1tb02348a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) have displayed great potential as catalyst carriers due to their nanoscale structure and large specific surface area. However, their hydrophobicity and poor dispersibility in water restrict their applications in aqueous environments. Herein, the dispersibility of MWCNTs was significantly enhanced with a chimeric protein MPKE which consisted of a zwitterionic peptide unit and a mussel adhesive protein unit. The MPKE could be easily attached to MWCNTs (MPKE-MWCNTs) by a simple stirring process due to the versatile adhesion ability of mussel adhesive unit. As expected, the MPKE-MWCNTs displayed outstanding dispersibility in water (>7 months), as well as in alkaline solutions (pH = 12) and organic solvents (DMSO and ethanol) due to the hydrophilicity of the zwitterionic peptide unit. Moreover, the MPKE-MWCNTs were used as silver nanoparticle carriers for the reduction of 4-nitrophenol in wastewater, with the normalized rate constant knor up to 32.9 s-1 mmol-1. Meanwhile, they also exhibited excellent biocompatibility and antibacterial activity, which were favorable for wastewater treatment. This work provides a facile strategy for MWCNT modification, functionalization and applications in aqueous environments.
Collapse
Affiliation(s)
- Jie Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, P. R. China.
| | - Xiaojie Sui
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, P. R. China.
| | - Haishan Qi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, P. R. China.
| | - Xiang Lan
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, P. R. China.
| | - Simin Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, P. R. China.
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, P. R. China.
| |
Collapse
|
6
|
Pham TN, Thi Hue N, Lee YC, Huy TQ, Thi Thu Thuy N, Tuan HV, Khi NT, Phan VN, Thanh TD, Lam VD, Le AT. A hybrid design of Ag-decorated ZnO on layered nanomaterials (MgAC) with photocatalytic and antibacterial dual-functional abilities. RSC Adv 2021; 11:38578-38588. [PMID: 35493260 PMCID: PMC9044211 DOI: 10.1039/d1ra08365a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
In this work, Ag@ZnO and Ag@ZnO/MgAC photocatalysts were synthesized using a simple two-step electrochemical method by the addition of magnesium aminoclay (MgAC) as a great stabilizer and a Lewis base, which could donate electrons for reduction of Ag+ and Zn2+ ions, facilitating uniform formation as well as effective inhibition of aggregation of Ag@ZnO nanoparticles (NPs) on the MgAC matrix. Ag@ZnO and Ag@ZnO/MgAC were investigated for photocatalytic degradation of MB and their antibacterial efficiencies. Ag@ZnO/MgAC showed excellent photocatalytic MB degradation with a performance of 98.56% after 80 min of visible-light irradiation and good antibacterial activity against Salmonella (Sal) and Staphylococcus aureus (S. aureus) bacterial strains, providing promising high application potential. Herein, different from the bare ZnO NPs, for Ag@ZnO/MgAC nanocomposites, Ag@ZnO NPs functioned as an effective photocatalyst under visible light illumination, in which, incorporated Ag atoms in the ZnO crystal structure caused the increase in a larger number of lattice defect sites. Benefiting from the strong surface plasmon resonance (SPR) effect of Ag and energy band matching between ZnO and Ag, the visible light absorption capacity and the separation of the photogenerated charge carriers were promoted. Therefore, the MB degradation efficiency of Ag@ZnO/MgAC was considerably accelerated in the presence of produced radicals from visible light illumination. Dual-functional Ag@ZnO/MgAC nanocomposites for photocatalytic and antibacterial applications synthesized by a simple two-step electrochemical method.![]()
Collapse
Affiliation(s)
- Tuyet Nhung Pham
- Phenikaa University Nano Institute (PHENA), PHENIKAA University Hanoi 12116 Vietnam
| | - Nguyen Thi Hue
- Phenikaa University Nano Institute (PHENA), PHENIKAA University Hanoi 12116 Vietnam
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University 1342 Seongnam-Daero, Sujeong-Gu Seongnam-Si Gyeonggi-do 13120 Republic of Korea
| | - Tran Quang Huy
- Phenikaa University Nano Institute (PHENA), PHENIKAA University Hanoi 12116 Vietnam
| | - Nguyen Thi Thu Thuy
- Phenikaa University Nano Institute (PHENA), PHENIKAA University Hanoi 12116 Vietnam
| | - Hoang Van Tuan
- Phenikaa University Nano Institute (PHENA), PHENIKAA University Hanoi 12116 Vietnam
| | - Nguyen Tien Khi
- Phenikaa University Nano Institute (PHENA), PHENIKAA University Hanoi 12116 Vietnam .,Faculty of Biotechnology, Chemistry and Environmental Engineering, PHENIKAA University Hanoi 12116 Vietnam
| | - Vu Ngoc Phan
- Phenikaa University Nano Institute (PHENA), PHENIKAA University Hanoi 12116 Vietnam .,Faculty of Biotechnology, Chemistry and Environmental Engineering, PHENIKAA University Hanoi 12116 Vietnam
| | - Tran Dang Thanh
- Graduate University of Science and Technology (GUST), Institute for Materials Science (IMS), Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi 10000 Vietnam
| | - Vu Dinh Lam
- Graduate University of Science and Technology (GUST), Institute for Materials Science (IMS), Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi 10000 Vietnam
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), PHENIKAA University Hanoi 12116 Vietnam .,Faculty of Materials Science and Engineering, PHENIKAA University Hanoi 12116 Vietnam
| |
Collapse
|
7
|
Velazquez-Urbina T, Espinoza-Gomez H, Flores-López LZ, Alonso-Núñez G. Synthesis and characterization of silver nanoparticles supported on Bivalve mollusk shell for catalytic degradation of commercial dyes. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|