1
|
Marwani HM, Ahmed J, Rahman MM. Development of a Toxic Lead Ionic Sensor Using Carboxyl-Functionalized MWCNTs in Real Water Sample Analyses. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22228976. [PMID: 36433572 PMCID: PMC9693170 DOI: 10.3390/s22228976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 06/09/2023]
Abstract
Functional multiwall carbon nanotubes (f-MWCNTs) are of significant interest due to their dispersion ability in the aqueous phase and potential application in environmental, nanotechnology, and biological fields. Herein, we functionalized MWCNTs by a simple acid treatment under ultra-sonification, which represented a terminal or side-functional improvement for the fabrication of a toxic lead ion sensor. The f-MWCNTs were characterized in detail by XRD, Raman, XPS, BET, UV/vis, FTIR, and FESEM-coupled XEDS techniques. The analytical performance of the f-MWCNTs was studied for the selective detection of toxic lead ions by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of the f-MWCNTs was evaluated using several metal ions such as Cd2+, Co2+, Cr3+, Cu2+, Fe3+, Ni2+, Pb2+, and Zn2+ ions. Lastly, the newly designed ionic sensor was successfully employed to selectively detect lead ions in several environmental water samples with reasonable results. This approach introduced a new technique for the selective detection of heavy metal ions using functional carbon nanotubes with ICP-OES for the safety of environmental and healthcare fields on a broad scale.
Collapse
Affiliation(s)
- Hadi M. Marwani
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Jahir Ahmed
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia
| | - Mohammed M. Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
2
|
Simultaneous toxic Cd(II) and Pb(II) encapsulation from contaminated water using Mg/Al-LDH composite materials. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Abou-Melha K. Synthesis, characterization, and biological application of some transition metal complexes of N'-(benzo[d][1,3]dioxol-5-ylmethylene)isonicotinohydrazide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Hussain MM, Asiri AM, Uddin J, Rahman MM. Development of L-cysteine sensor based on thallium oxide coupled multi-walled carbon nanotube nanocomposites with electrochemical approach. Chem Asian J 2021; 17:e202101117. [PMID: 34904384 DOI: 10.1002/asia.202101117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/16/2021] [Indexed: 11/07/2022]
Abstract
Here, Nanocomposites of thallium oxide doped multi-walled carbon nanotube (Tl2O.MWCNT NCs) were prepared by utilizing the wet-chemical method (WCM) in an alkaline phase at low temperature. Different optical procedures (FTIR: Fourier Transform Infra-Red Spectroscopy, XRD: Powder X-ray diffraction, FESEM: Field-Emission Scanning Electron Microscopy, XEDS: X-ray Electron Dispersive Spectroscopy, TEM: Tunneling Electron Microscopy, and XPS: X-ray photoelectron spectroscopy) were used to fully characterize (Optical, structural, crystalline, morphological, and elemental etc.) of the prepared Tl2O.MWCNT NCs. Modification of the thin-layer with NCs onto glassy carbon electrode (GCE) is prepared and applied for the enzyme-free detection of selective and sensitive L-cysteine by electrochemical approach. Using a reliable current-voltage approach, analytical sensing indexes such as sensitivity, LDR, LOD, LOQ, durability, and interference were assessed by fabricated sensor probe (GCE/Tl2O.MWCNT NCs/CPM) in selective detection of L-cysteine in a room condition, whereas nafion was used as conducting polymer matrix (CPM) during the fabrication of GCE with NCs. L-cysteine calibration plot was found to be linear over an extensive range of concentration. The calibration curve was used to calculate the sensing parameters such as sensitivity (316.46 pAμM-1cm-2), LOD down to (~18.90 ± 1.89 pM), and LOQ (63.0 pM) of the prepared sensor. The use of a simple WCM to validate the Tl2O.MWCNT NCs is a good approach for developing a NCs-based sensor for enzyme-free biomolecule identification and detection in the biomedical and health care fields in a broad scale. This proposed sensor (GCE/Tl2O.MWCNT NCs/CPM) is used to detect selective L-cysteine in real biological samples such as human, mouse, and rabbit serum and found acceptable and satisfactory results.
Collapse
Affiliation(s)
| | | | - Jamal Uddin
- Coppin State University, Natural Sciences, UNITED STATES
| | | |
Collapse
|
5
|
Hussain MM, Asiri AM, Uddin J, Rahman MM. An enzyme free simultaneous detection of γ-amino-butyric acid and testosterone based on copper oxide nanoparticles. RSC Adv 2021; 11:20794-20805. [PMID: 35479338 PMCID: PMC9033999 DOI: 10.1039/d1ra02709c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/22/2021] [Indexed: 01/11/2023] Open
Abstract
Herein, an easy wet-chemical process was used in basic medium with low temperature to prepare low-dimensional copper oxide nanoparticles (CuO NPs). A variety of optical and structural techniques such as UV-visible, FT-IR, XRD, FESEM, XEDS, and XPS were used to characterize the synthesized CuO NPs in detail. Two sensitive and selective sensor probes for γ-amino-butyric acid (GABA) and testosterone (TST) were achieved after modification; a thin layer of NPs on a flat glassy carbon electrode (GCE). Sensor analytical parameters such as sensitivity (SNT), linear dynamic range (LDR), limit of detection (LOD), limit of quantification (LOQ), robustness, and interference effects, were evaluated for the proposed sensor (GCE/CuO NPs) for GABA and TST, based on a dependable current-voltage technique. Calibration curves were found to be linear (R 2 = 0.9963 and 0.9095) over a broad concentration range of GABA and TST (100.0 pM to 100.0 mM and 10.0 pM to 10.0 mM, respectively). Sensor parameters - SNT (316.46 and 2848.10 pA μM-1 cm-2), LDR (100.0 nM to 10.0 mM and 10.0 pM to 1.0 mM), LOD (≈11.70 and 96.67 pM), and LOQ (39.0 and 322.2 pM) - for GABA and TST were calculated from the calibration plot successively. Preparation of CuO NPs using the wet-chemical technique is a good approach for perspective expansion of NPs-based sensors for the enzyme-free detection of biomolecules. Our sensor probe (GCE/CuO NPs) is applied for the cautious recognition of GABA and TST in real biological samples -human, mouse, and rabbit serum - and achieved good and acceptable results.
Collapse
Affiliation(s)
- Mohammad Musarraf Hussain
- Department of Chemistry, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia .,Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia.,Department of Pharmacy, Faculty of Life and Earth Sciences, Jagannath University Dhaka-1100 Bangladesh
| | - Abdullah M Asiri
- Department of Chemistry, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia .,Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University Baltimore MD 21216 USA
| | - Mohammed M Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia .,Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
6
|
Fegade U, Kolate S, Gokulakrishnan K, Ramalingan C, Altalhi T, Inamuddin, Kanchi S. A Selective Ratiometric Receptor 2-((E)-(3-(prop-1-en-2-yl)phenylimino)methyl)-4-nitrophenol for the Detection of Cu 2+ ions Supported By DFT Studies. J Fluoresc 2021; 31:625-634. [PMID: 33635498 DOI: 10.1007/s10895-021-02697-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/04/2021] [Indexed: 11/27/2022]
Abstract
A Schiff-base 2-((E)-(3-(prop-1-en-2-yl)phenylimino)methyl)-4-nitrophenol (Receptor 1) colorimetric probe was synthesized and its UV-visible and fluorescence spectral properties for the sensing of Cu+ 2 ions in CH3OH/H2O (60:40,v/v) solvent system was explored. The Receptor 1 showed the discriminating spectral behavior with the addition of Cu2+ ions solution. The other metal ions showed no significant effect towards Receptor 1. Moreover, the addition of Cu2+ ions to the Receptor 1 demonstrated the shift in the peak towards longer wavelength of 405 nm due to the ligand to metal charge transfer (LMCT) effect. The red-shift and new peak at 405 nm are due to the deprotonation of the -OH group and formation of complex and O-Cu covalent bond, respectively. A slight increase in the Cu2+ ion concentration exhibited strong absorption and fluorescence properties, leading to the spontaneous change in color from pale yellow to orange. Additionally, Density Functional Theory (DFT) studies were performed to investigate the interaction of Cu2+ ions with Receptor 1. The decrease in the energies (3.59062 kcal/mol to 0.36028 kcal/mol) of Cu2+-Receptor-1 complex compared to Receptor 1 confirms the strong interaction with high stability. The association constant (Ka) of Cu2+-Receptor-1 complex was found as 175000 M- 1. The limit of detection (LOD) was calculated and noted as 179 nM.
Collapse
Affiliation(s)
- Umesh Fegade
- Department of Chemistry, Bhusawal Arts, Science and P. O. Nahata Commerce College, Bhusawal, 425201, MH, India.
| | - Sachin Kolate
- Department of Chemistry, Bhusawal Arts, Science and P. O. Nahata Commerce College, Bhusawal, 425201, MH, India
| | - Kannan Gokulakrishnan
- Department of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University, Krishnankoil, 626126, TN, India
| | - Chennan Ramalingan
- Department of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University, Krishnankoil, 626126, TN, India
| | - Tariq Altalhi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Inamuddin
- Department of Applied Chemistry, Zakir Husain College of Engineering and Technology, Faculty of Engineering and Technology, Aligarh Muslim University, 202002, Aligarh, India
| | - Suvardhan Kanchi
- Department of Chemistry, Durban University of Technology, 4000, Durban, South Africa.,Department of Chemistry, Sambhram Institute of Technology, M.S. Palya, Jalahalli East, Bengaluru, 560097, India
| |
Collapse
|
7
|
Channegowda M. Recent advances in environmentally benign hierarchical inorganic nano-adsorbents for the removal of poisonous metal ions in water: a review with mechanistic insight into toxicity and adsorption. NANOSCALE ADVANCES 2020; 2:5529-5554. [PMID: 36133867 PMCID: PMC9418829 DOI: 10.1039/d0na00650e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/19/2020] [Indexed: 05/05/2023]
Abstract
Recent developments in nanoscience and technology have addressed many of the problems associated with water quality. Accordingly, using the technological outputs of the recent research on nanomaterials, the best solution for the purification of water is highlighted in this review. Herein, the main objective is to provide mechanistic insight into the synthesis of various inorganic nanoadsorbents and their adsorption chemistry for poisonous metal ions present in polluted water. Initially, the toxicity and carcinogenicity of As3+, Pb2+, Cr6+, Cd2+, and Hg2+ metal ions are highlighted. For the removal of these toxic ions, this review focuses on eco-friendly nanoadsorbents. The various preparation procedures utilized for the preparation of nanoadsorbents are briefly discussed. Generally, this is because of the adsorption capacity of nanoadsorbents depends on their morphology, shape, size, surface area, surface active sites, functional groups, and quantization effect. Also, due to the importance of their mechanism of action, the recent developments and challenges of novel nanoadsorbents such as metal oxides, core shell nanoparticles, magnetic nano ferrates, and functionalized core shell magnetic oxides and the processes for the treatment of water contaminated by toxic metal ions such as As3+, Pb2+, Cr6+, Cd2+, and Hg2+ are exclusively reviewed. Further, the adsorption efficiency of inorganic nanoadsorbents is also compared with that of activated carbon derived from various sources for all the above-mentioned metal ions.
Collapse
Affiliation(s)
- Manjunatha Channegowda
- Department of Chemistry, RV College of Engineering Bengaluru-560 059 Karnataka India +91 9036651277
- Visvesvaraya Technological University Belagavi-590018 India
| |
Collapse
|
8
|
Musarraf Hussain M, Asiri AM, Rahman MM. Non-enzymatic simultaneous detection of acetylcholine and ascorbic acid using ZnO·CuO nanoleaves: Real sample analysis. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105534] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Hussain MM, Asiri AM, Rahman MM. Synthesis, characterization, and physicochemical studies of the synthesized dimethoxy-Nʹ-(phenylsulfonyl)-benzenesulfonohydrazide derivatives and used as a probe for calcium ion capturing: Natural sample analysis. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Spychalska K, Zając D, Baluta S, Halicka K, Cabaj J. Functional Polymers Structures for (Bio)Sensing Application-A Review. Polymers (Basel) 2020; 12:E1154. [PMID: 32443618 PMCID: PMC7285029 DOI: 10.3390/polym12051154] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/16/2022] Open
Abstract
In this review we present polymeric materials for (bio)sensor technology development. We focused on conductive polymers (conjugated microporous polymer, polymer gels), composites, molecularly imprinted polymers and their influence on the design and fabrication of bio(sensors), which in the future could act as lab-on-a-chip (LOC) devices. LOC instruments enable us to perform a wide range of analysis away from the stationary laboratory. Characterized polymeric species represent promising candidates in biosensor or sensor technology for LOC development, not only for manufacturing these devices, but also as a surface for biologically active materials' immobilization. The presence of biological compounds can improve the sensitivity and selectivity of analytical tools, which in the case of medical diagnostics is extremely important. The described materials are biocompatible, cost-effective, flexible and are an excellent platform for the anchoring of specific compounds.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Cabaj
- Faculty of Chemistry, Wrocław University of Science and Technology, 50-137 Wrocław, Poland; (K.S.); (D.Z.); (S.B.); (K.H.)
| |
Collapse
|
11
|
Rahman MM, Hussain MM, Asiri AM. Enzyme-free detection of uric acid using hydrothermally prepared CuO·Fe 2O 3 nanocrystals. NEW J CHEM 2020. [DOI: 10.1039/d0nj04266h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Copper oxide doped iron oxide nanocrystals (CuO·Fe2O3 NCs) were prepared using a simple hydrothermal technique at low temperature in an alkaline medium.
Collapse
Affiliation(s)
- Mohammed M. Rahman
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | | | - Abdullah M. Asiri
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| |
Collapse
|
12
|
Hussain MM, Asiri AM, Rahman MM. A non-enzymatic electrochemical approach for l-lactic acid sensor development based on CuO·MWCNT nanocomposites modified with a Nafion matrix. NEW J CHEM 2020. [DOI: 10.1039/d0nj01715a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper oxide decorated multi-walled carbon nanotube nanocomposites (CuO·MWCNT NCs) were prepared using a simple wet-chemical technique in basic medium.
Collapse
Affiliation(s)
- Mohammad Musarraf Hussain
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)
| | - Abdullah M. Asiri
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)
| | - Mohammed M. Rahman
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)
| |
Collapse
|
13
|
Hussain MM, Asiri AM, Rahman MM. Simultaneous detection of l-aspartic acid and glycine using wet-chemically prepared Fe3O4@ZnO nanoparticles: real sample analysis. RSC Adv 2020; 10:19276-19289. [PMID: 35515430 PMCID: PMC9054059 DOI: 10.1039/d0ra03263h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/07/2020] [Indexed: 11/21/2022] Open
Abstract
An easy and reliable wet-chemical method was used to synthesize iron oxide doped zinc oxide nanoparticles (Fe3O4@ZnO NPs) at a low-temperature under alkaline medium.
Collapse
Affiliation(s)
| | - Abdullah M. Asiri
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Mohammed M. Rahman
- Chemistry Department
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| |
Collapse
|