1
|
Mousavi SM, Hashemi SA, Fallahi Nezhad F, Binazadeh M, Dehdashtijahromi M, Omidifar N, Ghahramani Y, Lai CW, Chiang WH, Gholami A. Innovative Metal-Organic Frameworks for Targeted Oral Cancer Therapy: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4685. [PMID: 37444999 DOI: 10.3390/ma16134685] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/12/2023] [Accepted: 05/29/2023] [Indexed: 07/15/2023]
Abstract
Metal-organic frameworks (MOFs) have proven to be very effective carriers for drug delivery in various biological applications. In recent years, the development of hybrid nanostructures has made significant progress, including developing an innovative MOF-loaded nanocomposite with a highly porous structure and low toxicity that can be used to fabricate core-shell nanocomposites by combining complementary materials. This review study discusses using MOF materials in cancer treatment, imaging, and antibacterial effects, focusing on oral cancer cells. For patients with oral cancer, we offer a regular program for accurately designing and producing various anticancer and antibacterial agents to achieve maximum effectiveness and the lowest side effects. Also, we want to ensure that the anticancer agent works optimally and has as few side effects as possible before it is tested in vitro and in vivo. It is also essential that new anticancer drugs for cancer treatment are tested for efficacy and safety before they go into further research.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Fatemeh Fallahi Nezhad
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz 71557-13876, Iran
| | - Milad Dehdashtijahromi
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz 71557-13876, Iran
| | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Yasamin Ghahramani
- Associate Professor of Endodontics Department of Endodontics, School of Dentistry Oral and Dental Disease Research Center Shiraz University of Medical Sciences, Shiraz 71956-15787, Iran
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya (UM), Kuala Lumpur 50603, Malaysia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| |
Collapse
|
2
|
Mezghrani B, Ali LMA, Jakimoska S, Cunin F, Hesemann P, Durand JO, Bettache N. Periodic Mesoporous Ionosilica Nanoparticles for BODIPY Delivery and Photochemical Internalization of siRNA. Chempluschem 2023; 88:e202300021. [PMID: 36779542 DOI: 10.1002/cplu.202300021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/14/2023]
Abstract
Periodic Mesoporous Ionosilica Nanoparticles (PMINPs) made via co-condensation reactions starting from an ionosilica precursor and a porphyrin derivative were used for simultaneous BODIPY/siRNA delivery in cancer cells. We observed high BODIPY loading capacities and efficiencies of the PMINPs that are triggered by anion exchange. siRNA adsorption took place on the surface of the nanoparticles, whereas BODIPY was encapsulated within the core of the nanoparticles. BODIPY release was found to be pH-dependent. Our results indicate 94 % BODIPY release after 16 h at pH 4, whereas only 2 % were released at pH 7.4. Furthermore, complexation with siRNA against luciferase gene was observed at the surface of PMINPs and gene silencing through its delivery via photochemical internalization (PCI) mechanism was efficient in MDA-MB-231 breast cancer cells expressing stable luciferase.
Collapse
Affiliation(s)
- Braham Mezghrani
- IBMM, Univ. Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293, Montpellier Cedex 05, France
- ICGM, Univ. Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293, Montpellier Cedex 05, France
| | - Lamiaa M A Ali
- IBMM, Univ. Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293, Montpellier Cedex 05, France
- Department of Biochemistry Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Sara Jakimoska
- IBMM, Univ. Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293, Montpellier Cedex 05, France
| | - Frédérique Cunin
- ICGM, Univ. Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293, Montpellier Cedex 05, France
| | - Peter Hesemann
- ICGM, Univ. Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293, Montpellier Cedex 05, France
| | - Jean-Olivier Durand
- ICGM, Univ. Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293, Montpellier Cedex 05, France
| | - Nadir Bettache
- IBMM, Univ. Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293, Montpellier Cedex 05, France
| |
Collapse
|
3
|
Guari Y, Cahu M, Félix G, Sene S, Long J, Chopineau J, Devoisselle JM, Larionova J. Nanoheterostructures based on nanosized Prussian blue and its Analogues: Design, properties and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
Mamontova E, Salles F, Guari Y, Larionova J, Long J. Post-synthetic modification of Prussian blue type nanoparticles: tailoring the chemical and physical properties. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01068b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review focuses on recent advances in the post-synthetic modification of nano-sized Prussian blue and its analogues and compares them with the current strategies used in metal–organic frameworks to give future outlooks in this field.
Collapse
Affiliation(s)
| | - Fabrice Salles
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Yannick Guari
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Jérôme Long
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris Cedex 05, France
| |
Collapse
|
5
|
Cahu M, Ali LMA, Sene S, Long J, Camerel F, Ciancone M, Salles F, Chopineau J, Devoisselle JM, Felix G, Cubedo N, Rossel M, Guari Y, Bettache N, Larionova J, Gary-Bobo M. A rational study of the influence of Mn 2+-insertion in Prussian blue nanoparticles on their photothermal properties. J Mater Chem B 2021; 9:9670-9683. [PMID: 34726228 DOI: 10.1039/d1tb00888a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We investigated a series of Mn2+-Prussian blue (PB) nanoparticles NazMnxFe1-x[Fe(CN)6]1-y□y·nH2O of similar size, surface state and cubic morphology with various amounts of Mn2+ synthesized through a one step self-assembly reaction. We demonstrated by a combined experimental-theoretical approach that during the synthesis, Mn2+ substituted Fe3+ up to a Mn/Na-Mn-Fe ratio of 32 at% in the PB structure, while for higher amounts, the Mn2[Fe(CN)6] analogue is obtained. For comparison, the post-synthetic insertion of Mn2+ in PB nanoparticles was also investigated and completed with Monte-Carlo simulations to probe the plausible adsorption sites. The photothermal conversion efficiency (η) of selected samples was determined and showed a clear dependence on the Mn2+amount with a maximum efficiency for a Mn/Na-Mn-Fe ratio of 10 at% associated with a dependence on the nanoparticle concentration. Evaluation of the in vitro photothermal properties of these nanoparticles performed on triple negative human breast adenocarcinoma (MDA-MB-231) cells by using continuous and pulsed laser irradiation confirm their excellent PTT efficiency permitting low dose use.
Collapse
Affiliation(s)
- Maëlle Cahu
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Lamiaa M A Ali
- IBMM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France. .,Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | - Saad Sene
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Jérôme Long
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Franck Camerel
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France
| | - Mathieu Ciancone
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France
| | - Fabrice Salles
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Joël Chopineau
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | - Gautier Felix
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Nicolas Cubedo
- MMDN, Univ. Montpellier, EPHE, PSL, INSERM, Montpellier, F-34095, France
| | - Mireille Rossel
- MMDN, Univ. Montpellier, EPHE, PSL, INSERM, Montpellier, F-34095, France
| | - Yannick Guari
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Nadir Bettache
- IBMM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | | |
Collapse
|
6
|
Mezghrani B, Ali LMA, Richeter S, Durand JO, Hesemann P, Bettache N. Periodic Mesoporous Ionosilica Nanoparticles for Green Light Photodynamic Therapy and Photochemical Internalization of siRNA. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29325-29339. [PMID: 34138540 DOI: 10.1021/acsami.1c05848] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report periodic mesoporous ionosilica nanoparticles (PMINPs) as versatile nano-objects for imaging, photodynamic therapy (PDT), and efficient adsorption and delivery of small interfering RNA (siRNA) into breast cancer cells. In order to endow these nanoparticles with PDT and siRNA photochemical internalization (PCI) properties, a porphyrin derivative was integrated into the ionosilica framework. For this purpose, we synthesized PMINPs via hydrolysis-cocondensation procedures from oligosilylated ammonium and porphyrin precursors. The formation of these nano-objects was proved by transmission electron microscopy. The formed nanoparticles were then thoroughly characterized via solid-state NMR, nitrogen sorption, dynamic light scattering, and UV-vis and fluorescence spectroscopies. Our results indicate the formation of highly porous nanorods with a length of 108 ± 9 nm and a width of 54 ± 4 nm. A significant PDT effect of type I mechanism (95 ± 2.8% of cell death) was observed upon green light irradiation in nanoparticle-treated breast cancer cells, while the blue light irradiation caused a significant phototoxic effect in non-treated cells. Furthermore, PMINPs formed stable complexes with siRNA (up to 24 h), which were efficiently internalized into the cells after 4 h of incubation mostly with the energy-dependent endocytosis process. The PCI effect was obvious with green light irradiation and successfully led to 83 ± 1.1% silencing of the luciferase gene in luciferase-expressing breast cancer cells, while no gene silencing effect was observed with blue light irradiation. The present work highlights the high potential of porphyrin-doped PMINPs as multifunctional nanocarriers for nucleic acids, such as siRNA, with a triple ability to perform imaging, PDT, and PCI.
Collapse
Affiliation(s)
- Braham Mezghrani
- IBMM, Univ. Montpellier, CNRS, ENSCM; Avenue Charles Flahault, CEDEX 05, 34093 Montpellier, France
- ICGM, Univ Montpellier-CNRS-ENSCM, 34090 Montpellier, France
| | - Lamiaa M A Ali
- IBMM, Univ. Montpellier, CNRS, ENSCM; Avenue Charles Flahault, CEDEX 05, 34093 Montpellier, France
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria 21561, Egypt
| | | | | | - Peter Hesemann
- ICGM, Univ Montpellier-CNRS-ENSCM, 34090 Montpellier, France
| | - Nadir Bettache
- IBMM, Univ. Montpellier, CNRS, ENSCM; Avenue Charles Flahault, CEDEX 05, 34093 Montpellier, France
| |
Collapse
|
7
|
Gao X, Wang Q, Cheng C, Lin S, Lin T, Liu C, Han X. The Application of Prussian Blue Nanoparticles in Tumor Diagnosis and Treatment. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6905. [PMID: 33287186 PMCID: PMC7730465 DOI: 10.3390/s20236905] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022]
Abstract
Prussian blue nanoparticles (PBNPs) have attracted increasing research interest in immunosensors, bioimaging, drug delivery, and application as therapeutic agents due to their large internal pore volume, tunable size, easy synthesis and surface modification, good thermal stability, and favorable biocompatibility. This review first outlines the effect of tumor markers using PBNPs-based immunosensors which have a sandwich-type architecture and competitive-type structure. Metal ion doped PBNPs which were used as T1-weight magnetic resonance and photoacoustic imaging agents to improve image quality and surface modified PBNPs which were used as drug carriers to decrease side effects via passive or active targeting to tumor sites are also summarized. Moreover, the PBNPs with high photothermal efficiency and excellent catalase-like activity were promising for photothermal therapy and O2 self-supplied photodynamic therapy of tumors. Hence, PBNPs-based multimodal imaging-guided combinational tumor therapies (such as chemo, photothermal, and photodynamic therapies) were finally reviewed. This review aims to inspire broad interest in the rational design and application of PBNPs for detecting and treating tumors in clinical research.
Collapse
Affiliation(s)
| | | | - Cui Cheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (X.G.); (Q.W.); (S.L.); (T.L.); (C.L.); (X.H.)
| | | | | | | | | |
Collapse
|