1
|
Zhao J, Alimu A, Li Y, Lin Z, Li J, Wang X, Wang Y, Lv G, Lin H, Lin Z. Potential Anti-Obesity Effect of Hazel Leaf Extract in Mice and Network Pharmacology of Selected Polyphenols. Pharmaceuticals (Basel) 2024; 17:1349. [PMID: 39458990 PMCID: PMC11510286 DOI: 10.3390/ph17101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Obesity is gradually becoming a widespread health problem, and treatment using natural compounds has seen an increasing trend. As a by-product of hazelnut, hazel leaf is usually disposed of as waste, but it is widely used in traditional and folk medicines around the world. Aim of this study: Based on previous studies, the effects of the regulation of lipid metabolism and the mechanism of hazel leaf polyphenol extraction obesity were investigated. Methods: In this study, a high-fat diet-fed mouse model of obesity and 3T3-L1 preadipocytes were established. The ameliorative effects of the hazel leaf polyphenol extract on obesity and the regulating lipid metabolisms were explored based on network pharmacology, gut microbiota, and molecular docking. Results: Network pharmacology showed that hazel leaf polyphenols may play a role by targeting key targets, including PPARγ, and regulating the PPAR signaling pathway. They significantly improved body weight gain, the liver index, and adiposity and lipid levels; regulated the gut microbiota and short-chain fatty acid contents; down-regulated the expression of lipid synthesis proteins SREBP1c, PPARγ, and C/EBP-α; and up-regulated the expression of p-AMPK in obese mice. They inhibited the differentiation of 3T3-L1 cells, and the expression of related proteins is consistent with the results in vivo. The molecular docking results indicated that gallic acid, quercetin-3-O-beta-D-glucopyranoside, quercetin, myricetin, and luteolin-7-O-glucoside in the hazel leaf polyphenol extract had strong binding activities with PPARγ, C/EBP-α, and AMPK. Conclusions: The results demonstrate that the hazel leaf polyphenol extract can improve obesity by regulating lipid metabolism, which provides a valuable basis for developing health products made from hazel leaf polyphenols in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - He Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (J.Z.); (A.A.); (Y.L.); (Z.L.); (J.L.); (X.W.); (Y.W.); (G.L.)
| | - Zhe Lin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (J.Z.); (A.A.); (Y.L.); (Z.L.); (J.L.); (X.W.); (Y.W.); (G.L.)
| |
Collapse
|
2
|
Ramerth A, Chapple B, Winter J, Moore W. The Other Side of the Perfect Cup: Coffee-Derived Non-Polyphenols and Their Roles in Mitigating Factors Affecting the Pathogenesis of Type 2 Diabetes. Int J Mol Sci 2024; 25:8966. [PMID: 39201652 PMCID: PMC11354961 DOI: 10.3390/ijms25168966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
The global prevalence of type 2 diabetes (T2D) is 10.5% among adults in the age range of 20-79 years. The primary marker of T2D is persistent fasting hyperglycemia, resulting from insulin resistance and β-cell dysfunction. Multiple factors can promote the development of T2D, including obesity, inflammation, and oxidative stress. In contrast, dietary choices have been shown to prevent the onset of T2D. Oatmeal, lean proteins, fruits, and non-starchy vegetables have all been reported to decrease the likelihood of T2D onset. One of the most widely consumed beverages in the world, coffee, has also demonstrated an impressive ability to reduce T2D risk. Coffee contains a diverse array of bioactive molecules. The antidiabetic effects of coffee-derived polyphenols have been thoroughly described and recently reviewed; however, several non-polyphenolic molecules are less prominent but still elicit potent physiological actions. This review summarizes the effects of select coffee-derived non-polyphenols on various aspects of T2D pathogenesis.
Collapse
Affiliation(s)
| | | | | | - William Moore
- School of Health Sciences, Department of Biology and Chemistry, Liberty University, Lynchburg, VA 24515, USA; (A.R.); (B.C.); (J.W.)
| |
Collapse
|
3
|
Ye Z, Zhao Y, Cui Y, Xu B, Wang F, Zhao D, Dong G, Wang Z, Wu R. Ling-gui-zhu-gan promotes adipocytes browning via targeting the miR-27b/PRDM16 pathway in 3T3-L1 cells. Front Pharmacol 2024; 15:1386794. [PMID: 39206264 PMCID: PMC11349548 DOI: 10.3389/fphar.2024.1386794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction: Obesity, a global epidemic, is caused by an imbalance between energy intake and expenditure. The induction of white adipose browning to increase heat production has emerged as a potential effective strategy to address obesity. Ling-gui-zhu-gan (LGZG), a traditional Chinese medicine formula, has been proved to achieve promising results to combat obesity and related metabolic diseases, yet the mechanisms remain largely unexplored. This study aimed to elucidate the anti-obesity properties and the mechanisms of LGZG by investigating its browning effect on 3T3-L1 adipocytes. Methods: LGZG-containing serum obtained by oral administration of LGZG to animals was added to 3T3-L1 adipocytes to simulate in vivo conditions. Results: The results showed that 49 compounds were identified in LGZG-containing serum by UHPLC-Q-Orbitrap HRMS, including compounds such as atractylenolides and polyporenic acid C, etc. LGZG-containing serum alleviated the lipid accumulation and decreased both intracellular and extracellular triglyceride contents in a dose-dependent manner. This reduction is accompanied by enhanced mitochondrial respiratory and heat production function. Mechanistically, LGZG-containing serum led to a decrease in miR-27b expression and an increase in the mRNA and protein levels of browning-related markers, including UCP1, PRDM16, PGC-1α, PPARγ, CTBP1, and CTBP2. Further investigation using miR-27b mimic transfection confirmed that miR-27b/PRDM16 pathway might be a potential mechanism by which LGZG-containing serum promotes browning of 3T3-L1 adipocytes. Discussion: These results underscore the therapeutic potential of LGZG in addressing obesity and its associated metabolic disorders through the promotion of adipose browning.
Collapse
Affiliation(s)
- Zimengwei Ye
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yanjing Cui
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bingrui Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fan Wang
- Department of Endocrinology, Guang’anmen Hospital South Campus, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dandan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guangtong Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhufeng Wang
- Department of Endocrinology, Guang’anmen Hospital South Campus, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Wu
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Endocrinology, Guang’anmen Hospital South Campus, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Yan J, Bak J, Go Y, Park J, Park M, Lee HJ, Kim H. Scytosiphon lomentaria Extract Ameliorates Obesity and Modulates Gut Microbiota in High-Fat-Diet-Fed Mice. Nutrients 2023; 15:815. [PMID: 36839173 PMCID: PMC9965426 DOI: 10.3390/nu15040815] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Scytosiphon lomentaria (SL) is a brown seaweed with antioxidant and anti-inflammatory properties; however, its effects on obesity are unknown. In this research, we investigated the anti-obesity properties and underlying mechanisms of the SL extract in vitro and in vivo. In 3T3-L1 preadipocytes, SL extract inhibited lipid accumulation, decreased the expression of Acc1, C/ebpa, Pparg mRNA and p-ACC1, and increased the expression of Ucp1 mRNA, UCP1 and p-AMPK. In animal experiments, mice were fed a chow diet, a high-fat diet (HF; 60% of calories as fat), and high-fat diet with SL extract (150 and 300 mg/kg body weight) for eight weeks (n = 10/group). SL extract reduced HF-induced weight gain, epididymal fat weight, fat cell size, LDL-C, leptin, fasting glucose, and glucose tolerance. In addition, SL extract had comparable effects on mRNA expression in WAT and liver to those observed in vitro, thereby inhibiting p-ACC1/ACC1 and increasing p-AMPK/AMPK and UCP1 expression. Furthermore, SL extract decreased HF-induced Firmicutes/Bacteroidetes ratio and reversed HF-reduced Bacteroides spp., Bacteroides vulgatus, and Faecalibacterium prausnitzii. These findings suggest that SL extract can aid in weight loss in mice fed a high-fat diet by altering adipogenic and thermogenic pathways, as well as gut microbiota composition.
Collapse
Affiliation(s)
- Jing Yan
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Jinwoo Bak
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Yula Go
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Jumin Park
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Minkyoung Park
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Hyemee Kim
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
5
|
Kim JY, Park EJ, Lee HJ. Ameliorative Effects of Lactobacillus plantarum HAC01 Lysate on 3T3-L1 Adipocyte Differentiation via AMPK Activation and MAPK Inhibition. Int J Mol Sci 2022; 23:ijms23115901. [PMID: 35682579 PMCID: PMC9180524 DOI: 10.3390/ijms23115901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
Lactobacillus plantarum HAC01 has been shown to effectively treat metabolic diseases. However, the precise pharmacological effects and molecular mechanisms of L. plantarum HAC01 remain unclear. In this study, we investigate the anti-adipogenic effects of L. plantarum HAC01 lysate and its associated mechanism of action. To induce lipid accumulation, 3T3-L1 cells were incubated in differentiation media with or without L. plantarum HAC01 lysate. Our results show that L. plantarum HAC01 lysate treatment not only reduced lipid accumulation during the differentiation of 3T3-L1 cells, but also decreased the expression of adipogenic and lipogenic genes involved in lipid metabolism in a dose-dependent manner. Additionally, L. plantarum HAC01 lysate inhibited CCAAT/enhancer-binding protein (C/EBP) beta within 4 h of differentiation induction and inhibited peroxisome proliferator-activated receptor gamma, C/EBP alpha, and sterol regulatory element-binding proteins within 2 d. Moreover, treatment with L. plantarum HAC01 lysate increased the phosphorylation of adenosine monophosphate-activated protein kinase, an important regulator of energy metabolism, and decreased the phosphorylation of mitogen-activated protein kinase. These results indicate that L. plantarum HAC01 lysate may have anti-adipogenic effects and support its potential as a useful agent for the treatment of obesity.
Collapse
Affiliation(s)
- Jong-Yeon Kim
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Gyeonggi-do, Korea;
| | - Eun-Jung Park
- Department of Food and Nutrition, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- Correspondence: (E.-J.P.); or (H.-J.L.); Tel.: +82-31-724-4408 (E.-J.P.); +82-31-750-5968 (H.-J.L.); Fax: +82-31-724-4411 (E.-J.P. & H.-J.L.)
| | - Hae-Jeung Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Gyeonggi-do, Korea;
- Department of Food and Nutrition, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- Correspondence: (E.-J.P.); or (H.-J.L.); Tel.: +82-31-724-4408 (E.-J.P.); +82-31-750-5968 (H.-J.L.); Fax: +82-31-724-4411 (E.-J.P. & H.-J.L.)
| |
Collapse
|