1
|
Li X, Zhu L, Che Z, Liu T, Yang C, Huang L. Progress of research on the surface functionalization of tantalum and porous tantalum in bone tissue engineering. Biomed Mater 2024; 19:042009. [PMID: 38838694 DOI: 10.1088/1748-605x/ad5481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Tantalum and porous tantalum are ideal materials for making orthopedic implants due to their stable chemical properties and excellent biocompatibility. However, their utilization is still affected by loosening, infection, and peripheral inflammatory reactions, which sometimes ultimately lead to implant removal. An ideal bone implant should have exceptional biological activity, which can improve the surrounding biological microenvironment to enhance bone repair. Recent advances in surface functionalization have produced various strategies for developing compatibility between either of the two materials and their respective microenvironments. This review provides a systematic overview of state-of-the-art strategies for conferring biological functions to tantalum and porous tantalum implants. Furthermore, the review describes methods for preparing active surfaces and different bioactive substances that are used, summarizing their functions. Finally, this review discusses current challenges in the development of optimal bone implant materials.
Collapse
Affiliation(s)
- Xudong Li
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Liwei Zhu
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Zhenjia Che
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Tengyue Liu
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Chengzhe Yang
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Lanfeng Huang
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| |
Collapse
|
2
|
Liu B, Yang Q, Cheng Y, Liu M, Ji Q, Zhang B, Yang Z, Zhou S, Liu D. Calcium phosphate hybrid micelles inhibit orthotopic bone metastasis from triple negative breast cancer by simultaneously killing cancer cells and reprogramming the microenvironment of bone resorption and immunosuppression. Acta Biomater 2023; 166:640-654. [PMID: 37236576 DOI: 10.1016/j.actbio.2023.05.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Triple negative breast cancer (TNBC) is prone to develop drug resistance and metastasis. Bone is the most common distant metastasis site of breast cancer cell. Patients with bone metastasis from TNBC suffer from unbearable pain due to the growth of bone metastasis and bone destruction. Simultaneously blocking the growth of bone metastasis and reprogramming the microenvironment of bone resorption and immunosuppression is a promising strategy to treat bone metastasis from TNBC. Herein, we prepared a pH and redox responsive drug delivery system, named DZ@CPH, by encapsulating docetaxel (DTX) with hyaluronic acid-polylactic acid micelle then reinforcing with calcium phosphate and zoledronate for targeting to bone metastasis from TNBC. DZ@CPH reduced the activation of osteoclast and inhibited bone resorption by decreasing the expression of nuclear factor κB receptor ligand and increasing the expression of osteoprotegerin in drug-resistant bone metastasis tissue. At the same time, DZ@CPH inhibited the invasion of bone metastatic TNBC cells by regulating the apoptosis-related and invasion-related protein expression. It also increased the sensitivity of orthotopic drug-resistant bone metastasis to DTX by inhibiting the expression of P-glycoprotein, Bcl-2 and transforming growth factor-β in tissue of drug-resistant bone metastasis. Moreover, the ratio between M1 type macrophage to M2 type macrophage in bone metastasis tissue was increased by DZ@CPH. In a word, DZ@CPH blocked the growth of bone metastasis from drug-resistant TNBC through inducing the apoptosis of drug-resistant TNBC cells and reprogramming the microenvironment of bone resorption and immunosuppression. DZ@CPH has a great potential in clinical application for the treatment of bone metastasis from drug-resistant TNBC. STATEMENT OF SIGNIFICANCE: Triple negative breast cancer (TNBC) is prone to develop bone metastasis. Now bone metastasis is still an intractable disease. In this study, docetaxel and zoledronate co-loaded calcium phosphate hybrid micelles (DZ@CPH) were prepared. DZ@CPH reduced the activation of osteoclasts and inhibited bone resorption. At the same time, DZ@CPH inhibited the invasion of bone metastatic TNBC cells by regulating the expression of apoptosis and invasion related protein in bone metastasis tissue. Moreover, the ratio between M1 type macrophages to M2 type macrophages in bone metastases tissue was increased by DZ@CPH. In a word, DZ@CPH blocked vicious cycle between the growth of bone metastasis and bone resorption, which greatly improved the therapeutic effect on bone metastasis from drug-resistant TNBC.
Collapse
Affiliation(s)
- Bao Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Qian Yang
- Department of pharmacy, School of Medicine, Shaanxi Energy Institute, Xianyang, 712000, China
| | - Ying Cheng
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Miao Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Qifeng Ji
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Bangle Zhang
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China
| | - Zhifu Yang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an 710032, China.
| | - Siyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China.
| | - Daozhou Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Wei CG, Zhang R, Wei LY, Pan P, Zu H, Liu YZ, Wang Y, Shen JK. Calcium phosphate-based nanomedicine mediated CRISPR/Cas9 delivery for prostate cancer therapy. Front Bioeng Biotechnol 2022; 10:1078342. [PMID: 36588949 PMCID: PMC9794984 DOI: 10.3389/fbioe.2022.1078342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction: Erythropoietin producing hepatocyte receptor A2 (EphA2) is widely presented in the tumor cells, closely related to tumor cell migration, not cell apoptosis and proliferation. Based on its high expression in castration-resistant prostate cancer (CRPC), we herein develop a CRISPR-Cas9-based genome-editing nanomedicine to target erythropoietin producing hepatocyte receptor A2 for the treatment of castration-resistant prostate cancer. Methods: To this end, TAT was designed to stabilize the distribution of calcium, and then bound to ribonucleoprotein (RNP) to form nanoparticles RNP@CaP-TAT. Results: This nanoparticle has a simple synthesis process with good biocompatible, to achieve the knockout of tumor cells (PC-3) targeting erythropoietin producing hepatocyte receptor A2 gene and to effectively suppress the migration of tumor cells. Discussion: This delivery genome editing system provides a promising gene therapy strategy for the treatment of castration-resistant prostate cancer, showing good potential against castration-resistant prostate cancer tumor metastasis. In addition, it can be extended to other types of cancer with highly heterogeneous gene expression.
Collapse
Affiliation(s)
- Chao-Gang Wei
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Rui Zhang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lan-Yi Wei
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Peng Pan
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - He Zu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Ya-Zhen Liu
- Department of Emergency, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yong Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China,*Correspondence: Jun-Kang Shen, ; Yong Wang,
| | - Jun-Kang Shen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China,*Correspondence: Jun-Kang Shen, ; Yong Wang,
| |
Collapse
|
4
|
Kresakova L, Danko J, Vdoviakova K, Medvecky L, Zert Z, Petrovova E, Varga M, Spakovska T, Pribula J, Gasparek M, Giretova M, Stulajterova R, Kolvek F, Andrejcakova Z, Simaiova V, Kadasi M, Vrabec V, Toth T, Hura V. In Vivo Study of Osteochondral Defect Regeneration Using Innovative Composite Calcium Phosphate Biocement in a Sheep Model. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4471. [PMID: 34442993 PMCID: PMC8398687 DOI: 10.3390/ma14164471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022]
Abstract
This study aimed to clarify the therapeutic effect and regenerative potential of the novel, amino acids-enriched acellular biocement (CAL) based on calcium phosphate on osteochondral defects in sheep. Eighteen sheep were divided into three groups, the treated group (osteochondral defects filled with a CAL biomaterial), the treated group with a biocement without amino acids (C cement), and the untreated group (spontaneous healing). Cartilages of all three groups were compared with natural cartilage (negative control). After six months, sheep were evaluated by gross appearance, histological staining, immunohistochemical staining, histological scores, X-ray, micro-CT, and MRI. Treatment of osteochondral defects by CAL resulted in efficient articular cartilage regeneration, with a predominant structural and histological characteristic of hyaline cartilage, contrary to fibrocartilage, fibrous tissue or disordered mixed tissue on untreated defect (p < 0.001, modified O'Driscoll score). MRI results of treated defects showed well-integrated and regenerated cartilage with similar signal intensity, regularity of the articular surface, and cartilage thickness with respect to adjacent native cartilage. We have demonstrated that the use of new biocement represents an effective solution for the successful treatment of osteochondral defects in a sheep animal model, can induce an endogenous regeneration of cartilage in situ, and provides several benefits for the design of future therapies supporting osteochondral defect healing.
Collapse
Affiliation(s)
- Lenka Kresakova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (J.D.); (K.V.); (E.P.); (V.S.)
| | - Jan Danko
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (J.D.); (K.V.); (E.P.); (V.S.)
| | - Katarina Vdoviakova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (J.D.); (K.V.); (E.P.); (V.S.)
| | - Lubomir Medvecky
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, Watsonova 47, 040 01 Kosice, Slovakia; (L.M.); (M.G.); (R.S.)
| | - Zdenek Zert
- Clinic of Horses, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (Z.Z.); (F.K.); (V.H.)
| | - Eva Petrovova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (J.D.); (K.V.); (E.P.); (V.S.)
| | - Maros Varga
- Hospital AGEL Kosice-Saca, Lucna 57, 040 15 Kosice-Saca, Slovakia; (M.V.); (T.S.); (J.P.)
| | - Tatiana Spakovska
- Hospital AGEL Kosice-Saca, Lucna 57, 040 15 Kosice-Saca, Slovakia; (M.V.); (T.S.); (J.P.)
| | - Jozef Pribula
- Hospital AGEL Kosice-Saca, Lucna 57, 040 15 Kosice-Saca, Slovakia; (M.V.); (T.S.); (J.P.)
| | - Miroslav Gasparek
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK;
| | - Maria Giretova
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, Watsonova 47, 040 01 Kosice, Slovakia; (L.M.); (M.G.); (R.S.)
| | - Radoslava Stulajterova
- Division of Functional and Hybrid Systems, Institute of Materials Research of SAS, Watsonova 47, 040 01 Kosice, Slovakia; (L.M.); (M.G.); (R.S.)
| | - Filip Kolvek
- Clinic of Horses, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (Z.Z.); (F.K.); (V.H.)
| | - Zuzana Andrejcakova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia;
| | - Veronika Simaiova
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (J.D.); (K.V.); (E.P.); (V.S.)
| | - Marian Kadasi
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia;
| | - Vladimir Vrabec
- Clinic of Birds, Exotic and Free Living Animals, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia;
| | - Teodor Toth
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Kosice, Letna 9, 042 00 Kosice, Slovakia;
| | - Vladimir Hura
- Clinic of Horses, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (Z.Z.); (F.K.); (V.H.)
| |
Collapse
|
5
|
Palhares TN, de Menezes LR, Kronemberger GS, Borchio PGDM, Baptista LS, Pereira LDCB, da Silva EO. Production and Characterization of Poly (Lactic Acid)/Nanostructured Carboapatite for 3D Printing of Bioactive Scaffolds for Bone Tissue Engineering. 3D PRINTING AND ADDITIVE MANUFACTURING 2021; 8:227-237. [PMID: 36654836 PMCID: PMC9828613 DOI: 10.1089/3dp.2020.0211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Biocompatible scaffolds are porous matrices that are bone substitutes with great potential in tissue regeneration. For this, these scaffolds need to have bioactivity and biodegradability. From this perspective, 3D printing presents itself as one of the techniques with the greatest potential for scaffold manufacturing with porosity and established structure, based on 3D digital modeling. Thus, the objective of the present work was to produce 3D scaffolds from the poly (lactic acid) (PLA) and the nanostructured hydroxyapatite doped with carbonate ions (CHA). For this purpose, filaments were produced via fusion for the fused-filament 3D printing and used to produce scaffolds with 50% porosity in the cubic shape and 0/90°configuration. The dispersive energy spectroscopy and Fourier transform infrared spectroscopy (FTIR) analysis demonstrated the presence of CHA in the polymeric matrix, confirming the presence and incorporation into the composite. The thermogravimetric analysis made it possible to determine that the filler concentration incorporated in the matrix was very similar to the proposed percentage, indicating that there were no major losses in the process of obtaining the filaments. It can be assumed that the influence of CHA as a filler presents better mechanical properties up to a certain amount. The biological results point to a great potential for the application of PLA/CHA scaffolds in bone tissue engineering with effective cell adhesion, proliferation, biocompatibility, and no cytotoxicity effects.
Collapse
Affiliation(s)
- Thiago Nunes Palhares
- Instituto de Macromoléculas Professora Eloisa Mano (IMA), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Coordenação de Matéria Condensada, Física Aplicada e Nanociência (COMAN), Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lívia Rodrigues de Menezes
- Instituto de Macromoléculas Professora Eloisa Mano (IMA), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela Soares Kronemberger
- Núcleo Multidisciplinar de Pesquisa (Numpex-Bio), Universidade Federal do Rio de Janeiro, Duque de Caxias, Rio de Janeiro, Brazil
- Laboratório de Bioengenharia Tecidual (Labio), Instituto Nacional de Metrologia Qualidade e Tecnologia, Duque de Caxias, Rio de Janeiro, Brazil
- Programa de Pós-graduação em Biomedicina Translacional (Biotrans), Unigranrio, Inmetro, UEZO, Duque de Caxias, Rio de Janeiro, Brazil
| | | | - Leandra Santos Baptista
- Núcleo Multidisciplinar de Pesquisa (Numpex-Bio), Universidade Federal do Rio de Janeiro, Duque de Caxias, Rio de Janeiro, Brazil
- Laboratório de Bioengenharia Tecidual (Labio), Instituto Nacional de Metrologia Qualidade e Tecnologia, Duque de Caxias, Rio de Janeiro, Brazil
- Programa de Pós-graduação em Biomedicina Translacional (Biotrans), Unigranrio, Inmetro, UEZO, Duque de Caxias, Rio de Janeiro, Brazil
| | - Leonardo da Cunha Boldrini Pereira
- Núcleo Multidisciplinar de Pesquisa (Numpex-Bio), Universidade Federal do Rio de Janeiro, Duque de Caxias, Rio de Janeiro, Brazil
- Programa de Pós-graduação em Biomedicina Translacional (Biotrans), Unigranrio, Inmetro, UEZO, Duque de Caxias, Rio de Janeiro, Brazil
| | - Emerson Oliveira da Silva
- Instituto de Macromoléculas Professora Eloisa Mano (IMA), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Huang G, Pan ST, Qiu JX. The Clinical Application of Porous Tantalum and Its New Development for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2647. [PMID: 34070153 PMCID: PMC8158527 DOI: 10.3390/ma14102647] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
Porous tantalum (Ta) is a promising biomaterial and has been applied in orthopedics and dentistry for nearly two decades. The high porosity and interconnected pore structure of porous Ta promise fine bone ingrowth and new bone formation within the inner space, which further guarantee rapid osteointegration and bone-implant stability in the long term. Porous Ta has high wettability and surface energy that can facilitate adherence, proliferation and mineralization of osteoblasts. Meanwhile, the low elastic modulus and high friction coefficient of porous Ta allow it to effectively avoid the stress shield effect, minimize marginal bone loss and ensure primary stability. Accordingly, the satisfactory clinical application of porous Ta-based implants or prostheses is mainly derived from its excellent biological and mechanical properties. With the advent of additive manufacturing, personalized porous Ta-based implants or prostheses have shown their clinical value in the treatment of individual patients who need specially designed implants or prosthesis. In addition, many modification methods have been introduced to enhance the bioactivity and antibacterial property of porous Ta with promising in vitro and in vivo research results. In any case, choosing suitable patients is of great importance to guarantee surgical success after porous Ta insertion.
Collapse
Affiliation(s)
| | | | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; (G.H.); (S.-T.P.)
| |
Collapse
|
7
|
Szewczyk A, Skwira A, Ginter M, Tajer D, Prokopowicz M. Microwave-Assisted Fabrication of Mesoporous Silica-Calcium Phosphate Composites for Dental Application. Polymers (Basel) 2020; 13:E53. [PMID: 33375650 PMCID: PMC7796352 DOI: 10.3390/polym13010053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Herein, the microwave-assisted wet precipitation method was used to obtain materials consisting of mesoporous silica (SBA-15) and calcium orthophosphates (CaP). Composites were prepared through immersion of mesoporous silica in different calcification coating solutions and then exposed to microwave radiation. The composites were characterized in terms of molecular structure, crystallinity, morphology, chemical composition, and mineralization potential by Fourier-transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), and scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM-EDX). The application of microwave irradiation resulted in the formation of different types of calcium orthophosphates such as calcium deficient hydroxyapatite (CDHA), octacalcium phosphate (OCP), and amorphous calcium phosphate (ACP) on the SBA-15 surface, depending on the type of coating solution. The composites for which the progressive formation of hydroxyapatite during incubation in simulated body fluid was observed were further used in the production of final pharmaceutical forms: membranes, granules, and pellets. All of the obtained pharmaceutical forms preserved mineralization properties.
Collapse
Affiliation(s)
- Adrian Szewczyk
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.S.); (A.S.); (M.G.); (D.T.)
| | - Adrianna Skwira
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.S.); (A.S.); (M.G.); (D.T.)
| | - Marta Ginter
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.S.); (A.S.); (M.G.); (D.T.)
- Scientific Circle of Students, Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Polland
| | - Donata Tajer
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.S.); (A.S.); (M.G.); (D.T.)
- Scientific Circle of Students, Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Polland
| | - Magdalena Prokopowicz
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.S.); (A.S.); (M.G.); (D.T.)
| |
Collapse
|