1
|
Mbenga Tjegbe MJ, Ateba BA, Daniel L, Azébazé AGB, Assongo Kenfack C. Binding of Mammea A/AA (MA) to calf thymus DNA revealed by the ratiometric absorbance of MA in the UV-visible range molecular dynamic simulations and TD-DFT calculations. J Biomol Struct Dyn 2024; 42:7233-7242. [PMID: 37639731 DOI: 10.1080/07391102.2023.2249983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/15/2023] [Indexed: 08/31/2023]
Abstract
The in vitro anti-proliferative activity of MA (5,7-dihydroxy-8-(3-methylbut-2-enyl)-6-(3-methyl-1-oxobutyl)-4-phenyl[1]2H-[1]benzopyran-2-one)on a variety of cancer cells was previously demonstrated. This work strives to understand the mechanisms by which MA exerts this biological activity. Thereafter, the binding of MA to calf thymus DNA was studied by monitoring the change in the UV-visible absorbance of MA. It was found that, the response of MA to binding with calf thymus DNA is characterised by an increase in the AS/AL ratio of the absorbance of the longest wavelength absorption band to the shortest one, and the appearance of a new band at about 377 nm assigned to S0→S1 transition, which is red shifted as compared to free MA. From the bands ratio, the binding constant is found to be 4.3x105 M-1, indicating strong binding. The deduced binding free energy, enthalpy and entropy are -7.7 kcal/mol, -10.89 ± 0.28 kcal/mol and -54.46 ± 4 J/K, respectively, indicating that MA binds to DNA by a non-bonding Van der Waals type interactions and hydrogen bonds. Further study with classical molecular dynamics shows that MA binds to DNA by intercalation, where it is positioned between two AT base pairs. Unlike isolated MA, TDDFT calculations on ten images extracted from the MD trajectory show that, the frontier molecular orbitals of the complex are distributed over the DNA and MA. This indicates a strong stacking interaction and then explains the hypochromism and the red shift of the S0→S1 transition. The present work demonstrates the potency of MA as antitumor compound and as absorbance-based molecular probe.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mathieu Jules Mbenga Tjegbe
- Laboratoire Optique et Applications, Centre de Physique Atomique Moléculaire et Optique Quantique, Faculté des Sciences, Université de Douala, Douala, Cameroon
- Laboratoire de Chimie, Département de Chimie, Faculté des Sciences, Université de Douala, Douala, Cameroon
| | - Baruch Amana Ateba
- Laboratoire de Chimie, Département de Chimie, Faculté des Sciences, Université de Douala, Douala, Cameroon
| | - Lissouck Daniel
- Laboratoire Optique et Applications, Centre de Physique Atomique Moléculaire et Optique Quantique, Faculté des Sciences, Université de Douala, Douala, Cameroon
- Department of Renewable Energy, Higher Technical Teachers' Training College, University of Buea, Kumba, Cameroon
| | - Anatole Guy Blaise Azébazé
- Laboratoire de Chimie, Département de Chimie, Faculté des Sciences, Université de Douala, Douala, Cameroon
| | - Cyril Assongo Kenfack
- Laboratoire Optique et Applications, Centre de Physique Atomique Moléculaire et Optique Quantique, Faculté des Sciences, Université de Douala, Douala, Cameroon
| |
Collapse
|
2
|
Monari A, Burger A, Dumont E. Rationalizing the environment-dependent photophysical behavior of a DNA luminescent probe by classical and non-adiabatic molecular dynamics simulations. Photochem Photobiol Sci 2023; 22:2081-2092. [PMID: 37166569 DOI: 10.1007/s43630-023-00431-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Environment-sensitive fluorescent nucleoside analogs are of utmost importance to investigate the structure of nucleic acids, their intrinsic flexibility, and sequence-specific DNA- and RNA-binding proteins. The latter play indeed a key role in transcription, translation as well as in the regulation of RNA stability, localization and turnover, and many other cellular processes. The sensitivity of the embedded fluorophore to polarity, hydration, and base stacking is clearly dependent on the specific excited-state relaxation mechanism and can be rationalized combining experimental and computational techniques. In this work, we elucidate the mechanisms leading to the population of the triplet state manifold for a versatile nucleobase surrogate, namely the 2-thienyl-3-hydroxychromone in gas phase, owing to non-adiabatic molecular dynamics simulations. Furthermore, we analyze its behavior in the B-DNA environment via classical molecular dynamics simulations, which evidence a rapid extrusion of the adenine facing the 2-thienyl-3-hydroxychromone nucleobase surrogate. Our simulations provide new insights into the dynamics of this family of chromophores, which could give rise to an integrated view and a fine tuning of their photochemistry, and namely the role of excited-state intramolecular proton transfer for the rational design of the next generation of fluorescent nucleoside analogs.
Collapse
Affiliation(s)
- Antonio Monari
- Université Paris Cité and CNRS, ITODYS, 75006, Paris, France.
| | - Alain Burger
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS, 06108, Nice, France
| | - Elise Dumont
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS, 06108, Nice, France.
- Institut Universitaire de France, 5 Rue Descartes, 75005, Paris, France.
| |
Collapse
|
3
|
Abdallah B, Lissouck D, Owono LCO, Kenfack CA. In silico simulation of the excited state proton transfer reaction of 2-(2-furyl)-3-hydroxychromone (FHC) in solution by empirical valence bond (EVB) method in conjunction with classical molecular dynamics. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Le HN, Brazard J, Barnoin G, Vincent S, Michel BY, Leonard J, Burger A. Control of Intermolecular Photoinduced Electron Transfer in Deoxyadenosine-Based Fluorescent Probes. Chemistry 2021; 27:1364-1373. [PMID: 32767410 DOI: 10.1002/chem.202003456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 12/12/2022]
Abstract
In this work, we report on the Photoinduced Electron Transfer (PET) reaction between a donor (adenine analogue) and an acceptor (3-methoxychromone dye, 3MC) in the context of designing efficient fluorescent probes as DNA sensors. Firstly, Gibbs energy was investigated in disconnected donor-acceptor systems by Rehm-Weller equation. The oxidation potential of the adenine derivative was responsible for exergonicity of the PET reaction in separated combinations. Then, the PET reaction in donor-π-acceptor conjugates was investigated using steady-state fluorescence spectroscopy, acid-mediated PET inhibition and transient absorption techniques. In conjugated systems, PET is a favorable pathway of fluorescent quenching when an electron-rich adenine analogue (d7A) was connected to the fluorophore (3MC). We found that formation of ground-state complexes even at nm concentration range dominated the dye photophysics and generated poorly emissive species likely through intermolecular PET from d7A to 3MC. On the other hand, solution acidification disrupts complexation and turns on the dye emission. Bridging an electron-poor adenine analogue with high oxidation potential (8 d7A) to 3MC presenting low reduction potential is another alternative to prevent complex formation and produce highly emissive monomer conjugates.
Collapse
Affiliation(s)
- Hoang-Ngoan Le
- Université Côte d'Azur, Institut de Chimie de Nice, UMR 7272, CNRS, Parc Valrose, 06108, Nice cedex 2, France
| | - Johanna Brazard
- Université de Strasbourg, Institut de Physique et Chimie, des Matériaux de Strasbourg and Labex NIE, UMR 7504, CNRS, 67200, Strasbourg, France.,Present address: Université de Genève, Département de Chimie Physique, 1211, Genève, France
| | - Guillaume Barnoin
- Université Côte d'Azur, Institut de Chimie de Nice, UMR 7272, CNRS, Parc Valrose, 06108, Nice cedex 2, France
| | - Steve Vincent
- Université Côte d'Azur, Institut de Chimie de Nice, UMR 7272, CNRS, Parc Valrose, 06108, Nice cedex 2, France
| | - Benoît Y Michel
- Université Côte d'Azur, Institut de Chimie de Nice, UMR 7272, CNRS, Parc Valrose, 06108, Nice cedex 2, France
| | - Jérémie Leonard
- Université de Strasbourg, Institut de Physique et Chimie, des Matériaux de Strasbourg and Labex NIE, UMR 7504, CNRS, 67200, Strasbourg, France
| | - Alain Burger
- Université Côte d'Azur, Institut de Chimie de Nice, UMR 7272, CNRS, Parc Valrose, 06108, Nice cedex 2, France
| |
Collapse
|