1
|
Varfolomeeva LA, Shipkov NS, Dergousova NI, Boyko KM, Khrenova MG, Tikhonova TV, Popov VO. Molecular mechanism of thiocyanate dehydrogenase at atomic resolution. Int J Biol Macromol 2024; 279:135058. [PMID: 39191340 DOI: 10.1016/j.ijbiomac.2024.135058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Some sulfur-oxidizing bacteria playing an important role in global geochemical cycles utilize thiocyanate as the sole source of energy and nitrogen. In these bacteria the process of thiocyanate into cyanate conversion is mediated by thiocyanate dehydrogenases - a recently discovered family of copper-containing enzymes with the three‑copper active site unique among the other copper proteins. To get a deeper insight into the structure and molecular mechanism of action of thiocyanate dehydrogenases we isolated, purified, and comprehensively characterized an enzyme from the bacterium Pelomicrobium methylotrophicum. High-resolution crystal structures of the thiocyanate dehydrogenase in the free state and in the complexes with the transition state analog, thiourea, and the closest substrate analog, selenocyanate, unveiled the fine details of molecular events occurring at the enzyme active site. During the reaction thiocyanate dehydrogenase undergoes profound conformational change that affects the position of the constituent copper ions and results in the activation of the attacking water molecule. The structure of the enzyme complex with the selenium atom bridged in-between two copper ions was obtained representing an important transient intermediate. Structures of the complexes with inhibitors supplemented with quantum chemical calculations clarify the role of copper ions and refine molecular mechanism of catalysis by thiocyanate dehydrogenase.
Collapse
Affiliation(s)
- Larisa A Varfolomeeva
- Laboratory of Enzyme Engineering, Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, Moscow 119071, Russian Federation
| | - Nikolai S Shipkov
- Laboratory of Enzyme Engineering, Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, Moscow 119071, Russian Federation
| | - Natalia I Dergousova
- Laboratory of Enzyme Engineering, Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, Moscow 119071, Russian Federation
| | - Konstantin M Boyko
- Laboratory of Enzyme Engineering, Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, Moscow 119071, Russian Federation
| | - Maria G Khrenova
- Laboratory of Enzyme Engineering, Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, Moscow 119071, Russian Federation; Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russian Federation
| | - Tamara V Tikhonova
- Laboratory of Enzyme Engineering, Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, Moscow 119071, Russian Federation
| | - Vladimir O Popov
- Laboratory of Enzyme Engineering, Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, Moscow 119071, Russian Federation; Department of Biology, Lomonosov Moscow State University, Leninskiye Gory 1, Moscow 119991, Russian Federation.
| |
Collapse
|
2
|
Krivitskaya AV, Khrenova MG. Interplay between the Enamine and Imine Forms of the Hydrolyzed Imipenem in the Active Sites of Metallo-β-lactamases and in Water Solution. J Chem Inf Model 2022; 62:6519-6529. [PMID: 35758922 DOI: 10.1021/acs.jcim.2c00539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Deactivation of the β-lactam antibiotics in the active sites of the β-lactamases is among the main mechanisms of bacterial antibiotic resistance. As drugs of last resort, carbapenems are efficiently hydrolyzed by metallo-β-lactamases, presenting a serious threat to human health. Our study reveals mechanistic aspects of the imipenem hydrolysis by bizinc metallo-β-lactamases, NDM-1 and L1, belonging to the B1 and the B3 subclasses, respectively. The results of QM(PBE0-D3/6-31G**)/MM simulations show that the enamine product with the protonated nitrogen atom is formed as the major product in NDM-1 and as the only product in the L1 active site. In NDM-1, there is also another reaction pathway that leads to the formation of the (S)-enantiomer of the imine form of the hydrolyzed imipenem; this process occurs with the higher energy barriers. The absence of the second pathway in L1 is due to the different amino acid composition of the active site loop. In L1, the hydrophobic Pro226 residue is located above the pyrroline ring of imipenem that blocks protonation of the carbon atom. Electron density analysis is performed at the stationary points to compare reaction pathways in L1 and NDM-1. Tautomerization from the enamine to the imine form likely happens in solution after the dissociation of the hydrolyzed imipenem from the active site of the enzyme. Classical molecular dynamics simulations of the hydrolyzed imipenem in solution, both with the neutral enamine and the negatively charged N-C2-C3 fragment, demonstrate a huge diversity of conformations. The vast majority of conformations blocks the C3-atom from the side required for the (S)-imine formation upon tautomerization. Thus, according to our calculations, formation of the (R)-imine is more likely. QM(PBE0-D3/6-31G**)/MM molecular dynamics simulations of the hydrolyzed imipenem with the negatively charged N-C2-C3 fragment followed by the Laplacian bond order analysis demonstrate that the N═C2-C3- resonance structure is the most pronounced that facilitates formation of the imine form. The proposed mechanism of the enzymatic enamine formation and its subsequent tautomerization to the imine form in solution is in agreement with the recent spectroscopic and NMR studies.
Collapse
Affiliation(s)
- Alexandra V Krivitskaya
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Maria G Khrenova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow 119071, Russia.,Department of Chemistry, Interdisciplinary Scientific and Educational School of Moscow University "Brain, Cognitive Systems, Artificial Intelligence", Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
3
|
How does electron exchange correlation influences reactivity of metallo-β-lactamase L1 against cephalosporin antibiotics. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Synthesis, physicochemical and in vitro biological evaluation of 99mTc-cefepime radioconjugates, and development of DTPA-cefepime single vial kit formulation for labelling with technetium-99m. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08363-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Levina EO, Khrenova MG, Astakhov AA, Tsirelson VG. Keto-enol tautomerism from the electron delocalization perspective. J Comput Chem 2022; 43:1000-1010. [PMID: 35411548 DOI: 10.1002/jcc.26858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/10/2022]
Abstract
The equilibrium between keto and enol forms in acetylacetone and its derivatives is studied using electron delocalization indices and delocalization tensor density. We demonstrate how electron delocalization governs the equilibrium between keto and enol forms. The less stable enols have more distinct double and single bond character in the CCC fragment, while electron delocalization in this fragment is more pronounced in more stable enols. Looking for the origin of such behavior, we considered the one-electron potentials entering the Euler equation for the electron density. We found that electron delocalization is mainly governed by the static exchange potential, which depends on the three-dimensional atomic structure. It, however, does not distinguish differences in electron delocalization in more and less stable enols, the effect arising from the kinetic exchange contribution, which reflects spin-dependent effects in the electron motion. The local depletion of kinetic exchange in the conjugated fragment yields the enhanced electron delocalization along the CCC bonds in more stable enols. Thus, a combination of considered descriptors allowed us to reveal the influence of electron delocalization on the equilibrium between keto and enol forms and showed the significant features of this phenomenon.
Collapse
Affiliation(s)
- Elena O Levina
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia.,Laboratory of Supercomputer Methods in Condensed Matter Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Maria G Khrenova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Andrey A Astakhov
- Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, Russia
| | - Vladimir G Tsirelson
- Department of Quantum Chemistry, Mendeleev University of Chemical Technology of Russia, Moscow, Russia.,Research Laboratory of Multiscale Modelling of Polyfunctional Compounds, South Ural State University, Chelyabinsk, Russia
| |
Collapse
|
6
|
Levina EO, Khrenova MG. Metallo-β-Lactamases: Influence of the Active Site Structure on the Mechanisms of Antibiotic Resistance and Inhibition. BIOCHEMISTRY (MOSCOW) 2021; 86:S24-S37. [PMID: 33827398 DOI: 10.1134/s0006297921140030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The review focuses on bacterial metallo-β-lactamases (MβLs) responsible for the inactivation of β-lactams and associated antibiotic resistance. The diversity of the active site structure in the members of different MβL subclasses explains different mechanisms of antibiotic hydrolysis and should be taken into account when searching for potential MβL inhibitors. The review describes the features of the antibiotic inactivation mechanisms by various MβLs studied by X-ray crystallography, NMR, kinetic measurements, and molecular modeling. The mechanisms of enzyme inhibition for each MβL subclass are discussed.
Collapse
Affiliation(s)
- Elena O Levina
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia
| | - Maria G Khrenova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia. .,Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
7
|
Krivitskaya AV, Khrenova MG. Boronic Acids as Prospective Inhibitors of Metallo-β-Lactamases: Efficient Chemical Reaction in the Enzymatic Active Site Revealed by Molecular Modeling. Molecules 2021; 26:2026. [PMID: 33918209 PMCID: PMC8038151 DOI: 10.3390/molecules26072026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/08/2023] Open
Abstract
Boronic acids are prospective compounds in inhibition of metallo-β-lactamases as they form covalent adducts with the catalytic hydroxide anion in the enzymatic active site upon binding. We compare this chemical reaction in the active site of the New Delhi metallo-β-lactamase (NDM-1) with the hydrolysis of the antibacterial drug imipenem. The nucleophilic attack occurs with the energy barrier of 14 kcal/mol for imipenem and simultaneously upon binding a boronic acid inhibitor. A boron atom of an inhibitor exhibits stronger electrophilic properties than the carbonyl carbon atom of imipenem in a solution that is quantified by atomic Fukui indices. Upon forming the prereaction complex between NDM-1 and inhibitor, the lone electron pair of the nucleophile interacts with the vacant p-orbital of boron that facilitates the chemical reaction. We analyze a set of boronic acid compounds with the benzo[b]thiophene core complexed with the NDM-1 and propose quantitative structure-sroperty relationship (QSPR) equations that can predict IC50 values from the calculated descriptors of electron density. These relations are applied to classify other boronic acids with the same core found in the database of chemical compounds, PubChem, and proposed ourselves. We demonstrate that the IC50 values for all considered benzo[b]thiophene-containing boronic acid inhibitors are 30-70 μM.
Collapse
Affiliation(s)
- Alexandra V. Krivitskaya
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Maria G. Khrenova
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia;
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|