1
|
Pei L, Ma H, Jiang Y, Zheng H, Gao H. Amphiphilic Polyethylene- b-poly(L-lysine) Block Copolymer: Synthesis, Self-Assembly, and Responsivity. Int J Mol Sci 2023; 24:5495. [PMID: 36982576 PMCID: PMC10052655 DOI: 10.3390/ijms24065495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Polyethylene-b-polypeptide copolymers are biologically interesting, but studies of their synthesis and properties are very few. This paper reports synthesis and characterization of well-defined amphiphilic polyethylene-block-poly(L-lysine) (PE-b-PLL) block copolymers by combining nickel-catalyzed living ethylene polymerization with controlled ring-opening polymerization (ROP) of ε-benzyloxycarbonyl-L-lysine-N-carboxyanhydride (Z-Lys-NCA) and sequential post-functionalization. Amphiphilic PE-b-PLL block copolymers self-assembled into spherical micelles with a hydrophobic PE core in aqueous solution. The pH and ionic responsivities of PE-b-PLL polymeric micelles were investigated by means of fluorescence spectroscopy, dynamic light scattering, UV-circular dichroism, and transmission electron microscopy. The variation of pH values led to the conformational alteration of PLL from α-helix to coil, thereby changing the micelle dimensions.
Collapse
Affiliation(s)
- Lixia Pei
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Hongyu Ma
- Daqing Chemical Engineering Research Center, Petrochemical Research Institute, Daqing 163714, China
| | - Yan Jiang
- Daqing Chemical Engineering Research Center, Petrochemical Research Institute, Daqing 163714, China
| | - Handou Zheng
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Haiyang Gao
- School of Materials Science and Engineering, PCFM Lab, GD HPPC Lab, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
2
|
Forlano N, Bucci R, Contini A, Venanzi M, Placidi E, Gelmi ML, Lettieri R, Gatto E. Non-Conventional Peptide Self-Assembly into a Conductive Supramolecular Rope. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020333. [PMID: 36678086 PMCID: PMC9867255 DOI: 10.3390/nano13020333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 05/27/2023]
Abstract
Structures composed of alternating α and β amino acids can give rise to peculiar secondary structural motifs, which could self-assemble into complex structures of controlled geometries. This work describes the self-assembly properties of an α,β-peptide, containing three units of syn H2-(2-F-Phe)-h-PheGly-OH, able to self-organize on surfaces into a fascinating supramolecular rope. This material was characterized by AFM, electronic conduction and fluorescence measurements. Molecular dynamics simulations showed that this hexapeptide can self-assemble into an antiparallel β-sheet layer, stabilized by intermolecular H-bonds, which, in turn, can self-assemble into many side-by-side layers, due to π-π interactions. As a matter of fact, we demonstrated that in this system, the presence of aromatic residues at the intramolecular interface promoted by the alternation of α,β-amino-acids in the primary sequence, endorses the formation of a super-secondary structure where the aromatic groups are close to each other, conferring to the system good electron conduction properties. This work demonstrates the capability and future potential of designing and fabricating distinctive nanostructures and efficient bioelectronic interfaces based on an α,β-peptide, by controlling structure and interaction processes beyond those obtained with α- or β-peptides alone.
Collapse
Affiliation(s)
- Nicola Forlano
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
| | - Raffaella Bucci
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milan, Italy
| | - Alessandro Contini
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milan, Italy
| | - Mariano Venanzi
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
| | - Ernesto Placidi
- Department of Physics, Sapienza University of Rome, P.le Aldo Moro 2, 00185 Rome, Italy
| | - Maria Luisa Gelmi
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milan, Italy
| | - Raffaella Lettieri
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
| | - Emanuela Gatto
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
| |
Collapse
|
3
|
Fasola E, Alboreggia G, Pieraccini S, Oliva F, Agharbaoui FE, Bollati M, Bertoni G, Recchia S, Marelli M, Piarulli U, Pellegrino S, Gazzola S. Conformational switch and multiple supramolecular structures of a newly identified self-assembling protein-mimetic peptide from Pseudomonas aeruginosa YeaZ protein. Front Chem 2022; 10:1038796. [PMID: 36583150 PMCID: PMC9792601 DOI: 10.3389/fchem.2022.1038796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Protein-mimetic peptides (PMPs) are shorter sequences of self-assembling proteins, that represent remarkable building blocks for the generation of bioinspired functional supramolecular structures with multiple applications. The identification of novel aminoacidic sequences that permit the access to valuable biocompatible materials is an attractive area of research. In this work, in silico analysis of the Pseudomonas aeruginosa YeaZ protein (PaYeaZ) led to the identification of a tetradecapeptide that represents the shortest sequence responsible for the YeaZ-YeaZ dimer formation. Based on its sequence, an innovative 20-meric peptide, called PMP-2, was designed, synthesized, and characterized in terms of secondary structure and self-assembly properties. PMP-2 conserves a helical character and self-assembles into helical nanofibers in non-polar solvents (DMSO and trifluoroethanol), as well as in dilute (0.5 mM) aqueous solutions. In contrast, at higher concentrations (>2 mM) in water, a conformational transition from α-helix to β-sheet occurs, which is accompanied by the Protein-mimetic peptide aggregation into 2D-sheets and formation supramolecular gel in aqueous environment. Our findings reveal a newly identified Protein-mimetic peptide that could turn as a promising candidate for future material applications.
Collapse
Affiliation(s)
- Elettra Fasola
- Science and High Technology Department, University of Insubria, Como, Italy
| | - Giulia Alboreggia
- Science and High Technology Department, University of Insubria, Como, Italy
| | | | | | | | - Michela Bollati
- CNR and Department of Biosciences, Institute of Biophysics, University of Milan, Milan, Italy
| | | | - Sandro Recchia
- Science and High Technology Department, University of Insubria, Como, Italy
| | - Marcello Marelli
- CNR-SCITEC—Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Milan, Italy
| | - Umberto Piarulli
- Science and High Technology Department, University of Insubria, Como, Italy,*Correspondence: Umberto Piarulli, ; Silvia Gazzola,
| | - Sara Pellegrino
- Pharmaceutical Science Department, University of Milan, Milan, Italy
| | - Silvia Gazzola
- Science and High Technology Department, University of Insubria, Como, Italy,*Correspondence: Umberto Piarulli, ; Silvia Gazzola,
| |
Collapse
|
4
|
Brambilla E, Locarno S, Gallo S, Orsini F, Pini C, Farronato M, Thomaz DV, Lenardi C, Piazzoni M, Tartaglia G. Poloxamer-Based Hydrogel as Drug Delivery System: How Polymeric Excipients Influence the Chemical-Physical Properties. Polymers (Basel) 2022; 14:polym14173624. [PMID: 36080699 PMCID: PMC9460339 DOI: 10.3390/polym14173624] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Thermogelling amphiphilic block copolymers have been widely investigated in the development of pharmaceutical drug carriers. In particular, thermosensitive gels based on poloxamer 407 (P407) have great potential for periodontal disease treatment, thanks to their ability to be liquid at room temperature and become viscous gels at body temperature. However, some problems, related to short in situ residence time, reduce their feasible clinical use. Thus, in order to improve the effective applicability of these materials, we studied how P407 thermogels are affected by the pH and by the inclusion of different hydrophilic polymers, used as excipients for increasing the gel stiffness. For this scope, a complete chemical-physical characterization of the synthesized gels is provided, in terms of determination of sol-gel transition temperature, viscosity and erosion degree. The data are correlated according to a statistical multivariate approach based on Principal Component Analysis and their mucoadhesion properties are also tested by Tapping mode-Atomic Force Microscopy (TM-AFM) imaging. Finally, we studied how the different P407 formulations are able to influence the release pathway of two antibacterial drugs (i.e., chlorhexidine digluconate and doxycycline hyclate) largely used in oral diseases.
Collapse
Affiliation(s)
- Elisa Brambilla
- Department of Pharmaceutical Sciences, Section of General and Organic Chemistry Section “A. Marchesini”, University of Milan, 20133 Milan, Italy
| | - Silvia Locarno
- Department of Physics “Aldo Pontremoli”, University of Milan, 20133 Milan, Italy
- Correspondence:
| | - Salvatore Gallo
- Department of Physics “Aldo Pontremoli”, University of Milan, 20133 Milan, Italy
| | - Francesco Orsini
- Department of Physics “Aldo Pontremoli”, University of Milan, 20133 Milan, Italy
| | - Carolina Pini
- Department of Physics “Aldo Pontremoli”, University of Milan, 20133 Milan, Italy
| | - Marco Farronato
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy
| | - Douglas Vieira Thomaz
- National Enterprise for NanoScience and NanoTechnology (NEST), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Cristina Lenardi
- Department of Physics “Aldo Pontremoli”, University of Milan, 20133 Milan, Italy
| | - Marco Piazzoni
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy
| | - Gianluca Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy
| |
Collapse
|
5
|
Impresari E, Bossi A, Lumina EM, Ortenzi MA, Kothuis JM, Cappelletti G, Maggioni D, Christodoulou MS, Bucci R, Pellegrino S. Fatty Acids/Tetraphenylethylene Conjugates: Hybrid AIEgens for the Preparation of Peptide-Based Supramolecular Gels. Front Chem 2022; 10:927563. [PMID: 36003614 PMCID: PMC9393247 DOI: 10.3389/fchem.2022.927563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Aggregation-induced emissive materials are gaining particular attention in the last decades due to their wide application in different fields, from optical devices to biomedicine. In this work, compounds having these kinds of properties, composed of tetraphenylethylene scaffold combined with fatty acids of different lengths, were synthesized and characterized. These molecules were found able to self-assemble into different supramolecular emissive structures depending on the chemical composition and water content. Furthermore, they were used as N-terminus capping agents in the development of peptide-based materials. The functionalization of a 5-mer laminin-derived peptide led to the obtainment of luminescent fibrillary materials that were not cytotoxic and were able to form supramolecular gels in aqueous environment.
Collapse
Affiliation(s)
- Elisa Impresari
- DISFARM, Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano, Milan, Italy
| | - Alberto Bossi
- Istituto di Scienze e Tecnologie Chimiche “G.Natta”, Consiglio Nazionale delle Ricerche (CNR-SCITEC), Milan, Italy
- SmartMatLab Center, Milan, Italy
| | - Edoardo Mario Lumina
- DISFARM, Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano, Milan, Italy
| | - Marco Aldo Ortenzi
- CRC Materiali Polimerici “LaMPo”, Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | | | | | - Daniela Maggioni
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Michael S. Christodoulou
- Departiment of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Raffaella Bucci
- DISFARM, Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano, Milan, Italy
| | - Sara Pellegrino
- DISFARM, Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Bucci R, Vaghi F, Di Lorenzo D, Anastasi F, Broggini G, Lo Presti L, Contini A, Gelmi ML. A Non‐coded β2,2‐Amino Acid with Isoxazoline Core Able to Stabilize Peptides Folding Through an Unprecedented Hydrogen Bond. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Raffaella Bucci
- Università degli Studi di Milano: Universita degli Studi di Milano Dipartimento di Scienze Farmaceutiche ITALY
| | - Francesco Vaghi
- Università degli Studi di Milano: Universita degli Studi di Milano Dipartimento di Scienze Farmaceutiche ITALY
| | - Davide Di Lorenzo
- Università degli Studi di Milano: Universita degli Studi di Milano Dipartimento di Scienze Farmaceutiche ITALY
| | - Francesco Anastasi
- Università degli Studi di Milano: Universita degli Studi di Milano Dipartimento di Scienze Farmaceutiche ITALY
| | - Gianluigi Broggini
- Università degli Studi dell'Insubria Dipartimento di Scienza e Alta Tecnologia ITALY
| | - Leonardo Lo Presti
- Università degli Studi di Milano: Universita degli Studi di Milano Dipartimento di Chimica ITALY
| | - Alessandro Contini
- Università degli Studi di Milano: Universita degli Studi di Milano Dipartimento di Scienze Farmaceutiche ITALY
| | - Maria Luisa Gelmi
- Universita degli Studi di Milano DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini” Via Venezian 21 20133 Milano ITALY
| |
Collapse
|
7
|
Wang Y, Sun R, Xu X, Du M, Zhu B, Wu C. Mechanism of enhancing the water-solubility and stability of curcumin by using self-assembled cod protein nanoparticles at an alkaline pH. Food Funct 2021; 12:12696-12705. [PMID: 34842883 DOI: 10.1039/d1fo02833b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Curcumin (Cur) is a bioactive phytochemical which is claimed to have several health-promoting benefits, whose applications are challenging due to its poor water-solubility, chemical instability, and low bioavailability. In this research, Cur was encapsulated in the cod protein (CP) using a pH-driven method to enhance its solubility and stability. The physicochemical and structural properties of cod protein-curcumin nanoparticles (CP-Cur) formed were characterized. Fluorescence spectroscopy (FL), ultraviolet spectroscopy (UV), circular dichroism (CD), and dynamic light scattering (DLS) results collectively suggest that the protein originally with a molten-globule state refolded into a more ordered structure after neutralization, during which Cur was incorporated. Fluorescence quenching and isothermal titration calorimetry (ITC) further showed that the CP/Cur binding was mainly driven by hydrophobic interactions, resulting in static fluorescence quenching and energy release. Up to 99.50% of Cur was loaded in the CP delivery system. Furthermore, the thermal stability and photostability of Cur were greatly improved due to the protection of the protein. The present study proved that cod protein could be a great potential edible carrier for encapsulating curcumin.
Collapse
Affiliation(s)
- Yuying Wang
- National Engineering Research Center of Seafood, China.,College of Food Science, Dalian Polytechnic University, Dalian 116034, China. .,College of Food Science, Jilin University, Changchun 130015, China
| | - Ruitong Sun
- National Engineering Research Center of Seafood, China.,College of Food Science, Dalian Polytechnic University, Dalian 116034, China.
| | - Xianbing Xu
- National Engineering Research Center of Seafood, China.,College of Food Science, Dalian Polytechnic University, Dalian 116034, China.
| | - Ming Du
- National Engineering Research Center of Seafood, China.,College of Food Science, Dalian Polytechnic University, Dalian 116034, China.
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, China.,College of Food Science, Dalian Polytechnic University, Dalian 116034, China. .,College of Food Science, Jilin University, Changchun 130015, China
| | - Chao Wu
- National Engineering Research Center of Seafood, China.,College of Food Science, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
8
|
Locarno S, Bucci R, Impresari E, Gelmi ML, Pellegrino S, Clerici F. Ultrashort Peptides and Gold Nanoparticles: Influence of Constrained Amino Acids on Colloidal Stability. Front Chem 2021; 9:736519. [PMID: 34660531 PMCID: PMC8517408 DOI: 10.3389/fchem.2021.736519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Poor colloidal stability of gold nanoparticles (AuNPs) in physiological environments remains one of the major limitations that contribute to their difficult translation from bench to clinic. For this reason, an active research field is the development of molecules able to hamper AuNPs aggregation tendency in physiological environments. In this context, synthetic peptides are gaining an increased interest as an alternative to the use of biomacromolecules and polymers, due to their easiness of synthesis and their profitable pharmacokinetic profile. In this work, we reported on the use of ultrashort peptides containing conformationally constrained amino acids (AAs) for the stabilization of AuNPs. A small library of non-natural self-assembled oligopeptides were synthesized and used to functionalize spherical AuNPs of 20 nm diameter, via the ligand exchange method. The aim was to investigate the role of the constrained AA, the anchor point (at C- or N-terminus) and the peptide length on their potential use as gold binding motif. Ultrashort Aib containing peptides were identified as effective tools for AuNPs colloidal stabilization. Furthermore, peptide coated AuNPs were found to be storable as powders without losing the stabilization properties once re-dispersed in water. Finally, the possibility to exploit the developed systems for binding proteins via molecular recognition was also evaluated using biotin as model.
Collapse
Affiliation(s)
- Silvia Locarno
- Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Milano, Italy
| | - Raffaella Bucci
- DISFARM-Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica ‘‘A. Marchesini”, Università degli Studi di Milano, Milano, Italy
| | - Elisa Impresari
- DISFARM-Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica ‘‘A. Marchesini”, Università degli Studi di Milano, Milano, Italy
| | - Maria Luisa Gelmi
- DISFARM-Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica ‘‘A. Marchesini”, Università degli Studi di Milano, Milano, Italy
| | - Sara Pellegrino
- DISFARM-Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica ‘‘A. Marchesini”, Università degli Studi di Milano, Milano, Italy
| | - Francesca Clerici
- DISFARM-Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica ‘‘A. Marchesini”, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
9
|
Locarno S, Galli A, Argentiere S, Galgano M, Giuntini I, Lenardi C, Perego C. Effects of cell line proliferation on the aggregation and stability of a hyaluronic acid solution (HA)/PLGA microparticles dispersed in the culture system. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1941953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Silvia Locarno
- Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Milan, Italy
| | - Alessandra Galli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Simona Argentiere
- Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Milan, Italy
| | | | | | - Cristina Lenardi
- Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Milan, Italy
- C.I.Ma.I.Na. Centro Intersciplinare Materiali e Interfacce Nanostrutturati, Milan, Italy
| | - Carla Perego
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
10
|
Bucci R, Georgilis E, Bittner AM, Gelmi ML, Clerici F. Peptide-Based Electrospun Fibers: Current Status and Emerging Developments. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1262. [PMID: 34065019 PMCID: PMC8151459 DOI: 10.3390/nano11051262] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022]
Abstract
Electrospinning is a well-known, straightforward, and versatile technique, widely used for the preparation of fibers by electrifying a polymer solution. However, a high molecular weight is not essential for obtaining uniform electrospun fibers; in fact, the primary criterion to succeed is the presence of sufficient intermolecular interactions, which function similar to chain entanglements. Some small molecules able to self-assemble have been electrospun from solution into fibers and, among them, peptides containing both natural and non-natural amino acids are of particular relevance. Nowadays, the use of peptides for this purpose is at an early stage, but it is gaining more and more interest, and we are now witnessing the transition from basic research towards applications. Considering the novelty in the relevant processing, the aim of this review is to analyze the state of the art from the early 2000s on. Moreover, advantages and drawbacks in using peptides as the main or sole component for generating electrospun nanofibers will be discussed. Characterization techniques that are specifically targeted to the produced peptide fibers are presented.
Collapse
Affiliation(s)
- Raffaella Bucci
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milan, Italy; (M.L.G.); (F.C.)
| | - Evangelos Georgilis
- CIC nanoGUNE, (BRTA) Tolosa Hiribidea 76, 20018 Donostia-San Sebastián, Spain; (E.G.); (A.M.B.)
| | - Alexander M. Bittner
- CIC nanoGUNE, (BRTA) Tolosa Hiribidea 76, 20018 Donostia-San Sebastián, Spain; (E.G.); (A.M.B.)
- Ikerbasque Basque Foundation for Science, Pl. Euskadi 5, 48009 Bilbao, Spain
| | - Maria L. Gelmi
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milan, Italy; (M.L.G.); (F.C.)
| | - Francesca Clerici
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milan, Italy; (M.L.G.); (F.C.)
| |
Collapse
|
11
|
Li Y, He D, Li B, Lund MN, Xing Y, Wang Y, Li F, Cao X, Liu Y, Chen X, Yu J, Zhu J, Zhang M, Wang Q, Zhang Y, Li B, Wang J, Xing X, Li L. Engineering polyphenols with biological functions via polyphenol-protein interactions as additives for functional foods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Bucci R, Vaghi F, Erba E, Romanelli A, Gelmi ML, Clerici F. Peptide grafting strategies before and after electrospinning of nanofibers. Acta Biomater 2021; 122:82-100. [PMID: 33326882 DOI: 10.1016/j.actbio.2020.11.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/14/2020] [Accepted: 11/30/2020] [Indexed: 01/06/2023]
Abstract
Nanofiber films produced by electrospinning currently provide a promising platform for different applications. Although nonfunctionalized nanofiber films from natural or synthetic polymers are extensively used, electrospun materials combined with peptides are gaining more interest. In fact, the selection of specific peptides improves the performance of the material for biological applications and mainly for tissue engineering, mostly by maintaining similar mechanical properties with respect to the simple polymer. The main drawback in using peptides blended with a polymer is the quick release of the peptides. To avoid this problem, covalent linking of the peptide is more beneficial. Here, we reviewed synthetic protocols that enable covalent grafting of peptides to polymers before or after the electrospinning procedures to obtain more robust electrospun materials. Applications and the performance of the new material compared to that of the starting polymer are discussed.
Collapse
|
13
|
Bucci R, Bossi A, Erba E, Vaghi F, Saha A, Yuran S, Maggioni D, Gelmi ML, Reches M, Pellegrino S. Nucleobase morpholino β amino acids as molecular chimeras for the preparation of photoluminescent materials from ribonucleosides. Sci Rep 2020; 10:19331. [PMID: 33168883 PMCID: PMC7652887 DOI: 10.1038/s41598-020-76297-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/23/2020] [Indexed: 11/10/2022] Open
Abstract
Bioinspired smart materials represent a tremendously growing research field and the obtainment of new building blocks is at the molecular basis of this technology progress. In this work, colloidal materials have been prepared in few steps starting from ribonucleosides. Nucleobase morpholino β-amino acids are the chimera key intermediates allowing Phe-Phe dipeptides' functionalization with adenine and thymine. The obtained compounds self-aggregate showing enhanced photoluminescent features, such as deep blue fluorescence and phosphorescence emissions.
Collapse
Affiliation(s)
- Raffaella Bucci
- DISFARM-Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale E Organica "A. Marchesini", Università Degli Studi Di Milano, Via Venezian 21, 20133, Milan, Italy
| | - Alberto Bossi
- Istituto Di Scienze E Tecnologie Chimiche "G. Natta" del Consiglio Nazionale Delle Ricerche (CNR-SCITEC), via Fantoli 16/15, 20138, Milan, Italy
- SmartMatLab Center, via C. Golgi 19, 20133, Milan, Italy
| | - Emanuela Erba
- DISFARM-Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale E Organica "A. Marchesini", Università Degli Studi Di Milano, Via Venezian 21, 20133, Milan, Italy
| | - Francesco Vaghi
- DISFARM-Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale E Organica "A. Marchesini", Università Degli Studi Di Milano, Via Venezian 21, 20133, Milan, Italy
| | - Abhijit Saha
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Institute of Chemistry, Jerusalem, Israel
| | - Sivan Yuran
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Institute of Chemistry, Jerusalem, Israel
| | - Daniela Maggioni
- SmartMatLab Center, via C. Golgi 19, 20133, Milan, Italy
- Dipartimento Di Chimica, Università Degli Studi Di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Maria Luisa Gelmi
- DISFARM-Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale E Organica "A. Marchesini", Università Degli Studi Di Milano, Via Venezian 21, 20133, Milan, Italy
| | - Meital Reches
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Institute of Chemistry, Jerusalem, Israel
| | - Sara Pellegrino
- DISFARM-Dipartimento Di Scienze Farmaceutiche, Sezione Chimica Generale E Organica "A. Marchesini", Università Degli Studi Di Milano, Via Venezian 21, 20133, Milan, Italy.
| |
Collapse
|