1
|
Kumar S, Singh AK. Micro-photo-flow reactor system for fused N-heteroaryl scaffold synthesis and late-stage functionalization of pyrazolopyridines. Chem Commun (Camb) 2022; 58:11268-11271. [PMID: 36112131 DOI: 10.1039/d2cc03713k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Late-stage functionalization (LSF) of active pharmaceutical ingredients can provide a straightforward approach to efficient de novo design and synthesis of drug molecules for structural activity relationship studies (SARS). Herein, we have developed a visible-light-driven modular micro-flow reactor consisting of an integrated post-synthetic work-up that was designed and developed to synthesize a fused N-heteroaryl scaffold and late-stage functionalization of pyrazolopyridines without using any expensive oxidant or additional photo-catalyst (PC).
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ajay K Singh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
2
|
Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chem Rev 2022; 122:2752-2906. [PMID: 34375082 PMCID: PMC8796205 DOI: 10.1021/acs.chemrev.1c00332] [Citation(s) in RCA: 264] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 02/08/2023]
Abstract
Photoinduced chemical transformations have received in recent years a tremendous amount of attention, providing a plethora of opportunities to synthetic organic chemists. However, performing a photochemical transformation can be quite a challenge because of various issues related to the delivery of photons. These challenges have barred the widespread adoption of photochemical steps in the chemical industry. However, in the past decade, several technological innovations have led to more reproducible, selective, and scalable photoinduced reactions. Herein, we provide a comprehensive overview of these exciting technological advances, including flow chemistry, high-throughput experimentation, reactor design and scale-up, and the combination of photo- and electro-chemistry.
Collapse
Affiliation(s)
- Laura Buglioni
- Micro
Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14—Helix, 5600 MB, Eindhoven, The Netherlands
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Fabian Raymenants
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Aidan Slattery
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D. A. Zondag
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Kumar S, Mahajan B, Malviya BK, Sukumar G, Srihari P, Singh AK. Electricity-induced micro-flow C–H/N–H alkyne annulation: a greener approach to access heteroaromatic compounds. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00260k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fast access to structurally diverse heteroaromatic compounds is demonstrated in an integrated continuous-flow manner without employing any expensive oxidant.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad 201002, Uttar Pradesh, India
| | - Bhushan Mahajan
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad 201002, Uttar Pradesh, India
| | - Bhanwar Kumar Malviya
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Genji Sukumar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - P. Srihari
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad 201002, Uttar Pradesh, India
| | - Ajay K. Singh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
4
|
Abstract
Photochemical transformations of molecular building blocks have become an important and widely recognized research field in the past decade. Detailed and deep understanding of novel photochemical catalysts and reaction concepts with visible light as the energy source has enabled a broad application portfolio for synthetic organic chemistry. In parallel, continuous-flow chemistry and microreaction technology have become the basis for thinking and doing chemistry in a novel fashion with clear focus on improved process control for higher conversion and selectivity. As can be seen by the large number of scientific publications on flow photochemistry in the recent past, both research topics have found each other as exceptionally well-suited counterparts with high synergy by combining chemistry and technology. This review will give an overview on selected reaction classes, which represent important photochemical transformations in synthetic organic chemistry, and which benefit from mild and defined process conditions by the transfer from batch to continuous-flow mode.
Collapse
Affiliation(s)
- Thomas H. Rehm
- Division Energy & Chemical Technology/Flow Chemistry GroupFraunhofer Institute for Microengineering and Microsystems IMMCarl-Zeiss-Straße 18–2055129MainzGermany
| |
Collapse
|
5
|
Raji Reddy C, Ganesh V, Singh AK. E- Z isomerization of 3-benzylidene-indolin-2-ones using a microfluidic photo-reactor. RSC Adv 2020; 10:28630-28634. [PMID: 35520055 PMCID: PMC9055887 DOI: 10.1039/d0ra05288d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/21/2020] [Indexed: 01/17/2023] Open
Abstract
Here, we report controlled E-Z isomeric motion of the functionalized 3-benzylidene-indolin-2-ones under various solvents, temperature, light sources, and most importantly effective enhancement of light irradiance in microfluidic photoreactor conditions. Stabilization of the E-Z isomeric motion is failed in batch process, which might be due to the exponential decay of light intensity, variable irradiation, low mixing, low heat exchange, low photon flux etc. This photo-μ-flow light driven motion is further extended to the establishment of a photostationary state under solar light irradiation.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Division of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 Uttar Pradesh India
| | - Veeramalla Ganesh
- Division of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 Uttar Pradesh India
| | - Ajay K Singh
- Division of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
| |
Collapse
|
6
|
Sthalam VK, Singh AK, Pabbaraja S. An Integrated Continuous Flow Micro-Total Ultrafast Process System (μ-TUFPS) for the Synthesis of Celecoxib and Other Cyclooxygenase Inhibitors. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Vinay Kumar Sthalam
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad 201002, Uttar Pradesh, India
| | - Ajay K. Singh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
7
|
Mahajan B, Mujawar T, Ghosh S, Pabbaraja S, Singh AK. Micro-electro-flow reactor (μ-EFR) system for ultra-fast arene synthesis and manufacture of daclatasvir. Chem Commun (Camb) 2019; 55:11852-11855. [DOI: 10.1039/c9cc06127d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Electro-micro flow reactor containing Pt@Ni@Cu anode materials for reductant free biaryl synthesis, further extended to daclatasvir synthesis.
Collapse
Affiliation(s)
- Bhushan Mahajan
- Division of Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Taufiqueahmed Mujawar
- Division of Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
| | - Subhash Ghosh
- Division of Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
| | - Srihari Pabbaraja
- Division of Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Ajay K. Singh
- Division of Organic Synthesis and Process Chemistry
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|