1
|
Shen M, Guo W, Tong L, Wang L, Chu PK, Kawi S, Ding Y. Behavior, mechanisms, and applications of low-concentration CO 2 in energy media. Chem Soc Rev 2025. [PMID: 39866134 DOI: 10.1039/d4cs00574k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
This review explores the behavior of low-concentration CO2 (LCC) in various energy media, such as solid adsorbents, liquid absorbents, and catalytic surfaces. It delves into the mechanisms of diffusion, adsorption, and catalytic reactions, while analyzing the potential applications and challenges of these properties in technologies like air separation, compressed gas energy storage, and CO2 catalytic conversion. Given the current lack of comprehensive analyses, especially those encompassing multiscale studies of LCC behavior, this review aims to provide a theoretical foundation and data support for optimizing CO2 capture, storage, and conversion technologies, as well as guidance for the development and application of new materials. By summarizing recent advancements in LCC separation techniques (e.g., cryogenic air separation and direct air carbon capture) and catalytic conversion technologies (including thermal catalysis, electrochemical catalysis, photocatalysis, plasma catalysis, and biocatalysis), this review highlights their importance in achieving carbon neutrality. It also discusses the challenges and future directions of these technologies. The findings emphasize that advancing the efficient utilization of LCC not only enhances CO2 reduction and resource utilization efficiency, promoting the development of clean energy technologies, but also provides an economically and environmentally viable solution for addressing global climate change.
Collapse
Affiliation(s)
- Minghai Shen
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
| | - Wei Guo
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
| | - Lige Tong
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
| | - Li Wang
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Hong Kong
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
| | - Yulong Ding
- Birmingham Centre for Energy Storage & School of Chemical Engineering, University of Birmingham, UK.
| |
Collapse
|
2
|
Ale Enriquez F, Ahring BK. Ex-situ single-culture biomethanation operated in trickle-bed configuration: Microbial H 2 kinetics and stoichiometry for biogas conversion into renewable natural gas. BIORESOURCE TECHNOLOGY 2024; 411:131330. [PMID: 39182797 DOI: 10.1016/j.biortech.2024.131330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Biomethanation converts carbon dioxide (CO2) emissions into renewable natural gas (RNG) using mixed microbial cultures enriched with hydrogenotrophic archaea. This study examines the performance of a single methanogenic archaeon converting biogas with added hydrogen (H2) into methane (CH4) using a trickle-bed bioreactor with enhanced gas-liquid mass transport. The process in continuous operation followed the theoretical reaction of hydrogenotrophic methanogenesis (CO2 + 4 H2 → CH4 + 2 H2O), producing RNG with over 99 % CH4 and more than 0.9 H2 conversion efficiency. The Monod constants of H2 uptake were experimentally determined using kinetic modelling. Also, a dimensionless parameter was used to quantify the ratio between the H2 mass transfer rate and the maximum attainable H2 consumption rate. Single-culture biomethanation averts the formation of secondary metabolites and bicarbonate buffer interferences, resulting in lower demands for H2 than mixed-culture biomethanation.
Collapse
Affiliation(s)
- Fuad Ale Enriquez
- Bioproducts, Sciences, and Engineering Laboratory, Washington State University, Tri-Cities, Richland, WA 99354, USA; The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Birgitte K Ahring
- Bioproducts, Sciences, and Engineering Laboratory, Washington State University, Tri-Cities, Richland, WA 99354, USA; The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA; Biological Systems Engineering Department, L.J. Smith Hall, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
3
|
Feng S, Su R. Synthetic Chemistry in Flow: From Photolysis & Homogeneous Photocatalysis to Heterogeneous Photocatalysis. CHEMSUSCHEM 2024; 17:e202400064. [PMID: 38608169 DOI: 10.1002/cssc.202400064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/08/2024] [Indexed: 04/14/2024]
Abstract
Photocatalytic synthesis of value-added chemicals has gained increasing attention in recent years owing to its versatility in driving many important reactions under ambient conditions. Selective hydrogenation, oxidation, coupling, and halogenation with a high conversion of the reactants have been realized using designed photocatalysts in batch reactors with small volumes at a laboratory scale; however, scaling-up remains a critical challenge due to inefficient utilization of incident light and active sites of the photocatalysts, resulting in poor catalytic performance that hinders its practical applications. Flow systems are considered one of the solutions for practical applications of light-driven reactions and have experienced great success in photolytic and homogeneous photocatalysis, yet their applications in heterogeneous photocatalysis are still under development. In this perspective, we have summarized recent progress in photolytic and photocatalytic synthetic chemistry performed in flow systems from the view of reactor design with a special focus on heterogeneous photocatalysis. The advantages and limitations of different flow systems, as well as some practical considerations of design strategies are discussed.
Collapse
Affiliation(s)
- Sitong Feng
- Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow University, 215006, Suzhou, China
| | - Ren Su
- Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow University, 215006, Suzhou, China
| |
Collapse
|
4
|
Zhou F, Cai L, Ye W, Zhu K, Li J, Li Y, Xu W, Wang P, Duanmu C. Efficient and Controllable Synthesis of 1-Aminoanthraquinone via High-Temperature Ammonolysis Using Continuous-Flow Method. Molecules 2023; 28:molecules28114314. [PMID: 37298791 DOI: 10.3390/molecules28114314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Anthraquinone dyes are the second most important type of dyes after azo dyes. In particular, 1-aminoanthraquinone has been extensively utilized in the preparation of diverse anthraquinone dyes. This study employed a continuous-flow method to synthesize 1-aminoanthraquinone safely and efficiently through the ammonolysis of 1-nitroanthraquinone at high temperatures. Various conditions (reaction temperature, residence time, molar ratio of ammonia to 1-nitroanthraquinone (M-ratio), and water content) were investigated to explore the details of the ammonolysis reaction behavior. Operation conditions for the continuous-flow ammonolysis were optimized using Box-Behnken design in the response surface methodology, and ~88% yield of 1-aminoanthraquinone could be achieved with an M-ratio of 4.5 at 213 °C and 4.3 min. The developed process's reliability was evaluated by performing a 4 h process stability test. The kinetic behavior for the preparation of 1-aminoanthraquinone was investigated under continuous-flow mode to guide the reactor design and to gain a deeper understanding of the ammonolysis process.
Collapse
Affiliation(s)
- Feng Zhou
- National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-Salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Lei Cai
- National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-Salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Wenjie Ye
- National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-Salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Kai Zhu
- China Construction Industrial & Energy Engineering Group Co., Ltd., 6 Wenlan Road, Qixia District, Nanjing 210023, China
| | - Jin Li
- National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-Salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Yanxing Li
- National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-Salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Weichuan Xu
- National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-Salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Pan Wang
- National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-Salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Chuansong Duanmu
- National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-Salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| |
Collapse
|
5
|
O'Brien M, Moraru R. An Automated Computer-Vision "Bubble-Counting" Technique to Characterise CO 2 Dissolution into an Acetonitrile Flow Stream in a Teflon AF-2400 Tube-in-Tube Flow Device. Chempluschem 2023; 88:e202200167. [PMID: 35997644 DOI: 10.1002/cplu.202200167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/30/2022] [Indexed: 01/28/2023]
Abstract
A Teflon AF-2400 based tube-in-tube device was used to generate flow streams of CO2 in acetonitrile and a computer-vision based 'bubble counting' technique was used to estimate the amount of CO2 that had passed into solution whilst in the tube-in-tube device by quantifying the amount of CO2 that left solution (forming separate gas-phase segments) downstream of the back-pressure regulator. For both CO2 pressures used, there appeared to be a minimum residence time below which no CO2 was observed to leave solution. This was assumed to be due to residual CO2 below (or close to) the saturation concentration at atmospheric pressure and, by taking this into account, we were able to fit curves corresponding to simple gradient-driven diffusion and which closely matched previously obtained colorimetric titration data for the same system. The estimated value for the residual concentration of CO2 (0.37 M) is higher than, but in reasonable general correspondence with, saturation concentrations previously reported for CO2 in acetonitrile (0.27 M).
Collapse
Affiliation(s)
- Matthew O'Brien
- The Lennard-Jones Laboratories, Keele University, Keele, Borough of Newcastle-under-Lyme, ST5 5BG, Staffordshire, UK
| | - Ruxandra Moraru
- The Lennard-Jones Laboratories, Keele University, Keele, Borough of Newcastle-under-Lyme, ST5 5BG, Staffordshire, UK
| |
Collapse
|
6
|
Enhancement of gas-liquid mass transfer in curved membrane contactors with the generation of dean vortices. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Challenges in transfer of gas-liquid reactions from batch to continuous operation: dimensional analysis and simulations for aerobic oxidation. J Flow Chem 2021. [DOI: 10.1007/s41981-021-00176-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AbstractThe transfer of gas-liquid reactions from conventional batch processes into continuous operation using milli and micro reactors is claimed as an important step towards process intensification. Importantly, this transfer step should be realized in an early phase of process development, already, in order to minimize research efforts towards the undesired operation strategy. The main challenge of this approach, therefore, arises from lack of knowledge in the early stage of process development and the resulting system with high degrees of freedom. This contribution presents an approach to tackle this challenge by means of mathematical modelling and simulation for the aerobic oxidation of 9,10-dihydroanthracene (DHA) catalyzed by polyoxometalates (POMs) being used as example for gas-liquid reactions. The reaction was chosen as it provides sufficient complexity, since it consists of three consecutive oxidation steps of DHA and a parallel catalytic redox-cycle according to a Mars-van-Krevelen mechanism. It also provides the challenge of unknown reaction kinetics, which have been estimated in this contribution. The dimensionless balance equations for reactor modeling are derived and parametrized based on early stage experimental results obtained in batch operation mode. The discrimination between batch and continuous operation was performed by means of characteristic dimensionless numbers using the identical mathematical model for comparability reasons. The model was used to perform sensitivity studies with emphasis on the interplay between mass transfer characteristics and reaction kinetics for both the batch and continuous operation mode. The simulation results show that the performance of both operation modes mainly depend on the oxidation state of the POM catalyst, which is caused by the differences in oxygen availability. Therefore, results obtained in batch operation mode are prone to be masked by mass transfer issues, which affects catalyst and reactor development at the same time and may thus cause maldevelopments. With respect to process development it can thus be concluded that the transfer from batch to continuous operation together with mathematical modeling is important in an early phase, already, in order to detect limitations misleading the development. Finally, even simple models with roughly estimated parameters from preliminary experiments are shown to be sufficient in the early phase and can systematically be improved, in the subsequent phases.
Graphical abstract
Collapse
|
8
|
Han S, Kashfipour MA, Ramezani M, Abolhasani M. Accelerating gas-liquid chemical reactions in flow. Chem Commun (Camb) 2020; 56:10593-10606. [PMID: 32785297 DOI: 10.1039/d0cc03511d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past decade, continuous flow reactors have emerged as a powerful tool for accelerated fundamental and applied studies of gas-liquid reactions, offering facile gas delivery and process intensification. In particular, unique features of highly gas-permeable tubular membranes in flow reactors (i.e., tube-in-tube flow reactor configuration) have been exploited as (i) an efficient analytic tool for gas-liquid solubility and diffusivity measurements and (ii) reliable gas delivery/generation strategy, providing versatile adaptability for a wide range of gas-liquid processes. The tube-in-tube flow reactors have been successfully adopted for rapid exploration of a wide range of gas-liquid reactions (e.g., amination, carboxylation, carbonylation, hydrogenation, ethylenation, oxygenation) using gaseous species both as the reactant and the product, safely handling toxic and flammable gases or unstable intermediate compounds. In this highlight, we present an overview of recent developments in the utilization of such intensified flow reactors within modular flow chemistry platforms for different gas-liquid processes involving carbon dioxide, oxygen, and other gases. We provide a detailed step-by-step guideline for robust assembly and safe operation of tube-in-tube flow reactors. We also discuss the current challenges and potential future directions for further development and utilization of tubular membrane-based flow reactors for gas-liquid processes.
Collapse
Affiliation(s)
- Suyong Han
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA.
| | | | | | | |
Collapse
|
9
|
Zhou C, Xie B, Li S, Zhang J. Rapid measurement of gas diffusivity in liquids using a tube‐in‐tube reactor with an unsteady‐state strategy. AIChE J 2020. [DOI: 10.1002/aic.17015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Caijin Zhou
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering Tsinghua University Beijing China
| | - Bingqi Xie
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering Tsinghua University Beijing China
| | - Shaowei Li
- The Institute of Nuclear and New Energy Technology, Tsinghua University Beijing China
| | - Jisong Zhang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering Tsinghua University Beijing China
| |
Collapse
|