1
|
Sun X, Zhang X, Li F. Aggregation emission of AuNCs induced by chitosan self-assembled multilayers and sensitive sensing for water content in ethanol. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:837-842. [PMID: 36722892 DOI: 10.1039/d2ay01876d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
AuNCs with chemical groups such as -NH2 and -COOH were synthesized using glutathione as the stabilizer and reducing agent. The aggregation emission of AuNCs in solution-induced self-assembled multilayers (SAMs) were first studied. Scanning electron microscopy and quartz crystal microbalance were used to characterize the morphology and aggregation process of AuNCs. Further AuNC SAMs were used for the solid-liquid interface sensing of water content in ethanol, and the sensitivity is obviously improved as compared with that in the pure solution phase. This aggregation emission induced by SAMs would have a good application prospect in analysis.
Collapse
Affiliation(s)
- Xiangying Sun
- College of Materials Science and Engineering, Huaqiao University, No. 668 Jimei Avenue, Jimei District, Xiamen 361021, China.
- Key Laboratory of Molecular Designing and Green Conversions, Fujian University, China
| | - Xuefeng Zhang
- College of Materials Science and Engineering, Huaqiao University, No. 668 Jimei Avenue, Jimei District, Xiamen 361021, China.
- Key Laboratory of Molecular Designing and Green Conversions, Fujian University, China
| | - Fang Li
- College of Materials Science and Engineering, Huaqiao University, No. 668 Jimei Avenue, Jimei District, Xiamen 361021, China.
- Key Laboratory of Molecular Designing and Green Conversions, Fujian University, China
| |
Collapse
|
2
|
Kim G, Kim D, Choi Y, Ghorai A, Park G, Jeong U. New Approaches to Produce Large-Area Single Crystal Thin Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203373. [PMID: 35737971 DOI: 10.1002/adma.202203373] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Wafer-scale growth of single crystal thin films of metals, semiconductors, and insulators is crucial for manufacturing high-performance electronic and optical devices, but still challenging from both scientific and industrial perspectives. Recently, unconventional advanced synthetic approaches have been attempted and have made remarkable progress in diversifying the species of producible single crystal thin films. This review introduces several new synthetic approaches to produce large-area single crystal thin films of various materials according to the concepts and principles.
Collapse
Affiliation(s)
- Geonwoo Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Dongbeom Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Yoonsun Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Arup Ghorai
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Gyeongbae Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| |
Collapse
|
3
|
Effect of dilution on the performance of ionic liquids in milliflow solvent extraction applications: Towards integration of extraction, scrubbing and stripping operations with in-line membrane-based phase separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Gkogkos G, Besenhard MO, Storozhuk L, Thi Kim Thanh N, Gavriilidis A. Fouling-proof triple stream 3D flow focusing based reactor: Design and demonstration for iron oxide nanoparticle co-precipitation synthesis. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Taylor vortex center, film thickness, velocity and frequency of circulations in slugs and plugs for non-Newtonian and Newtonian fluids in two-phase Taylor flow in microchannels. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Park G, Giri A, Kumar M, Moon S, Pal M, Kim DW, Jeong U. Pseudoequilibrium between Etching and Selective Grain Growth: Chemical Conversion of a Randomly Oriented Au Film into a (111)-Oriented Ultrathin Au Film. NANO LETTERS 2021; 21:9772-9779. [PMID: 34766778 DOI: 10.1021/acs.nanolett.1c03712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metal thin films with a specific orientation play vital roles in electronics, catalysts, and epitaxial templates. Although oriented metal films have been produced in the recent years, ultrathin oriented metal films (<10 nm) have not been achieved owing to the interfacial instability of the ultrathin films during the thermal annealing process. This study investigates chemical conversion of randomly oriented multigrain Au ultrathin films into (111)-oriented Au ultrathin films. A novel chemical process, termed pseudoequilibrium of etching and selective grain growth, is presented for the chemical conversion by using a quaternary ammonium halide. The reaction variables (reaction time, reaction temperature, species of halide ions) for the chemical conversion process are systematically investigated. This study reveals the in-plane rotational degeneracy in the Au(111) thin film epitaxially grown on a Si(111) substrate. The chemical process can be applied to a broad range of thicknesses from 9 to 100 nm.
Collapse
Affiliation(s)
- Gyeongbae Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 790-784, Korea
| | - Anupam Giri
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 790-784, Korea
| | - Manish Kumar
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 790-784, Korea
| | - Sungmin Moon
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 790-784, Korea
| | - Monalisa Pal
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 790-784, Korea
| | - Dong Wook Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 790-784, Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 790-784, Korea
| |
Collapse
|
7
|
Bianchi P, Petit G, Monbaliu JCM. Scalable and robust photochemical flow process towards small spherical gold nanoparticles. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00092b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Scalable preparation of small spherical gold nanoparticles under photochemical flow conditions.
Collapse
Affiliation(s)
- Pauline Bianchi
- Center for Integrated Technology and Organic Synthesis
- MolSys Research Unit
- University of Liège
- Belgium
| | - Guillaume Petit
- Center for Integrated Technology and Organic Synthesis
- MolSys Research Unit
- University of Liège
- Belgium
| | | |
Collapse
|
8
|
Długosz O, Banach M. Inorganic nanoparticle synthesis in flow reactors – applications and future directions. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00188k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of flow technologies for obtaining nanoparticles can play an important role in the development of ecological and sustainable processes for obtaining inorganic nanomaterials, and the continuous methods are part of the Flow Chemistry trend.
Collapse
Affiliation(s)
- Olga Długosz
- Faculty of Chemical Engineering and Technology
- Institute of Chemistry and Inorganic Technology
- Cracow University of Technology
- Cracow 31-155
- Poland
| | - Marcin Banach
- Faculty of Chemical Engineering and Technology
- Institute of Chemistry and Inorganic Technology
- Cracow University of Technology
- Cracow 31-155
- Poland
| |
Collapse
|