1
|
Liu J, Cao L, Wang Z, Chen Q, Zhao H, Guo X, Yuan Y. Hydration effect and molecular geometry conformation as critical factors affecting the longevity stability of G 4-structure-based supramolecular hydrogels. J Mater Chem B 2024; 12:9713-9726. [PMID: 39221483 DOI: 10.1039/d4tb01145g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Nucleoside-derived supramolecular hydrogels based on G4-structures have been extensively developed in the biomedical sector and recognized for superior excellent biocompatibility and biodegradability. However, limited longevity and stability present a significant challenge. Chemical modifications in the molecular structure have been shown to enhance the longevity stability of G4-structure-based supramolecular hydrogels, but the precise way in which the molecular structure impacts the stability of the G4-structures and consequently affects the properties of the hydrogel remains to be elucidated. This issue represents a notable challenge in the field, which restricts their further applications to some extent. In this study, single crystals of Gd, αGd and αGd* were cultivated and compared with G. Notably, before this study, the single crystal structures of all natural nucleosides, with the exception of Gd, had been determined. The investigation into the molecular structure and supramolecular self-assembly properties of four guanosine analogs at the atomic scale revealed that the formation of G-quartets is critical for their ability to form hydrogels. The stability of the sugar ring geometry conformation (an intrinsic factor) and the disorder and strength of the hydration effect (extrinsic factors) are vital for maintaining the stability of the G4-structures. The rapid cooling changes the molecular geometry conformation, and the organic solvent changes the hydration effect, which can improve the longevity stability of G4-structure-based supramolecular hydrogels instead of chemical modifications. Consequently, the lifespan of the hydrogels was extended from 2 h to over one week. This advancement is expected to offer significant insights for future research in designing and developing G4-structure-based supramolecular hydrogels.
Collapse
Affiliation(s)
- Jiang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Lideng Cao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zheng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Hang Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xiurong Guo
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Yao Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Liu M, He Y, Wojtas L, Shi X. Design and Synthesis of Covalently Tethered "IsoG-Star" as Recyclable Host for Selective Cesium Separation. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2023; 25:8494-8499. [PMID: 38765495 PMCID: PMC11101156 DOI: 10.1039/d3gc02932h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The isoguanosine self-assembled pentamer (isoG-star) has exhibited remarkable selectivity for Cs+ binding over competing alkali and alkali earth metal cation, rendering it a promising extractor for radioactive waste 137Cs separation. However, to make isoG-star a pracrtical material for Cs+ isolation, the development of recyclable isoG-star material is required. In this study, a systematic screening of functional isoG derivatives was performed. By employing well-defined complex formation and post-assembly modification, a covalently tethered isoG5-star was prepared through olefin metathesis, utilizing a designed isoG monomer. The application of this newly developed covalently linked isoG-star enabled selective Cs+ extraction, followed by controled solvent-induced H-bond dessociation. This resulted in the creation of a recyclable Cs+ extractor, demonstrating excellent cation selectivity and good reusability (over seven cycles) the first time. Consequently, this new supramolecular macrocycle offers a practical new platform for the treatment of radiocesium (134Cs and 137Cs) in an environmentally friendly and highly effective manner.
Collapse
Affiliation(s)
- Mengjia Liu
- Department of Chemistry, University of South Florida, Tampa, FL 33620 (USA)
| | - Ying He
- Department of Chemistry, University of South Florida, Tampa, FL 33620 (USA)
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, Tampa, FL 33620 (USA)
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, Tampa, FL 33620 (USA)
| |
Collapse
|
3
|
Liu Y, Chang G, Zheng F, Chen L, Yang Q, Ren Q, Bao Z. Hybrid Hydrogen-Bonded Organic Frameworks: Structures and Functional Applications. Chemistry 2023; 29:e202202655. [PMID: 36414543 DOI: 10.1002/chem.202202655] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
As a new class of porous crystalline materials, hydrogen-bonded organic frameworks (HOFs) assembled from building blocks by hydrogen bonds have gained increasing attention. HOFs benefit from advantages including mild synthesis, easy purification, and good recyclability. However, some HOFs transform into unstable frameworks after desolvation, which hinders their further applications. Nowadays, the main challenges of developing HOFs lie in stability improvement, porosity establishment, and functionalization. Recently, more and more stable and permanently porous HOFs have been reported. Of all these design strategies, stronger charge-assisted hydrogen bonds and coordination bonds have been proven to be effective for developing stable, porous, and functional solids called hybrid HOFs, including ionic and metallized HOFs. This Review discusses the rational design synthesis principles of hybrid HOFs and their cutting-edge applications in selective inclusion, proton conduction, gas separation, catalysis and so forth.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China
| | - Ganggang Chang
- State Key Laboratory of Advanced Technology for, Materials Synthesis and Processing, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei Province, 430070, P.R. China
| | - Fang Zheng
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Lihang Chen
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China.,Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China.,Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China.,Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| |
Collapse
|
4
|
He Y, Liu M, Teng S, Wojtas L, Gu G, Shi X. Synthesis and Characterization of Fluorescence Active G 4-Quartet and Direct Evaluation of Self-Assembly Impact on Emission. CHINESE CHEM LETT 2022; 33:4203-4207. [PMID: 38107831 PMCID: PMC10723654 DOI: 10.1016/j.cclet.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fluorescence (FL) active 8-aryl guanosine derivatives were prepared and applied for cation mediated self-assembly to form the H-bonded G8-quadruplexes. The p-cyano (p-CN) and 8-anthracene (8-An) substituted guanosines were identified to give the strongest fluorescence with the formation of G8-octamers (G8) both in solution (NMR) and solid state (X-ray). This well-defined G8-octamer system has provided the first direct evidence on the self-assembled G-quadruplex fluorescence emission with aggregation-induced emission (AIE), which could be applied as the foundation for FL molecular probe design toward G-quadruplex recognition.
Collapse
Affiliation(s)
- Ying He
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Mengjia Liu
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Shun Teng
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Guangxin Gu
- Department of Materials Science, Fudan University, 2005 Songhu Rd., Shanghai, 200438, PR China
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
5
|
Walunj MB, Srivatsan SG. Heterocycle-modified 2'-Deoxyguanosine Nucleolipid Analogs Stabilize Guanosine Gels and Self-assemble to Form Green Fluorescent Gels. Chem Asian J 2021; 17:e202101163. [PMID: 34817121 DOI: 10.1002/asia.202101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/22/2021] [Indexed: 11/08/2022]
Abstract
Nucleoside-lipid conjugates are very useful supramolecular building blocks to construct self-assembled architectures suited for biomedical and material applications. Such nucleoside derivatives can be further synthetically manipulated to endow additional functionalities that could augment the assembling process and impart interesting properties. Here, we report the design, synthesis and self-assembling process of multifunctional supramolecular nucleolipid synthons containing an environment-sensitive fluorescent guanine. The amphiphilic synthons are composed of an 8-(2-(benzofuran-2-yl)vinyl)-guanine core and alkyl chains attached to 3'-O and 5'-O-positions of 2'-deoxyguanosine. The 2-(benzofuran-2-yl)vinyl (BFV) moiety attached at the C8 position of the nucleobase adopted a syn conformation about the glycosidic bond, which facilitated the self-assembly process through the formation of a G-tetrad as the basic unit. While 3',5'-diacylated BFV-modified dG analog stabilized the guanosine hydrogel by hampering the crystallization process and imparted fluorescence, BFV-modified dGs containing longer alkyl chains formed a green fluorescent organogel, which transformed into a yellow fluorescent gel in the presence of a complementary non-fluorescent cytidine nucleolipid. The ability of the dG analog containing short alkyl chains to modulate the mechanical property of a gel, and interesting fluorescence properties and self-assembling behavior exhibited by the dG analogs containing long alkyl chains in response to heat and complementary base underscore the potential use of these new supramolecular synthons in material applications.
Collapse
Affiliation(s)
- Manisha B Walunj
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
6
|
He Y, Zhang Y, Liu M, Zhao K, Shan C, Wojtas L, Guo H, Ding A, Shi X. Synthesis of microporous hydrogen-bonded supramolecular organic frameworks through guanosine self-assembly. CELL REPORTS. PHYSICAL SCIENCE 2021; 2:100519. [PMID: 35663193 PMCID: PMC9162061 DOI: 10.1016/j.xcrp.2021.100519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Extending the structural hierarchy and complexity through small-molecular self-assembly is a powerful way to obtain large discrete, functional molecular architecture. A hydrogen-bonded supramolecular organic framework (HSOF) with nanometer-size pores is constructed in a solid state with simple guanosine-monomer self-assembly. To extend the hierarchy of the G-quartet self-assembly to a higher order thanthatofthetraditionalG-quadruplex,H-bondacceptorsontheC-8 position of guanosine are introduced to establish inter-quadruplex linkage via H bonding to N(2)-HB from the neighboring G-quartet. After screening different C-8 substitution groups and various synthesis conditions, HSOF-G1a' is obtained by solvent evaporation under diluted condition. Single-crystal X-ray structure reveals that cubic repeating units formed by G8 are the supermolecule secondary building block (SBU) with large pores (d=34A). To our knowledge, this is the first G-quartet self-assembly with an organized structure beyond cylindrical G-quadruplexes.
Collapse
Affiliation(s)
- Ying He
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| | - Yanbin Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Mengjia Liu
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| | - Kai Zhao
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| | - Chuan Shan
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| | - Hao Guo
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Aishun Ding
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
- Lead contact
| |
Collapse
|
7
|
Zhao K, He Y, Shan C, Wojtas L, Ren J, Yan Y, Shi H, Wang H, Song Z, Shi X. Construction of Stable Helical Metal-Organic Frameworks with a Conformationally Rigid "Concave Ligand". Chemistry 2021; 27:10833-10838. [PMID: 34033693 DOI: 10.1002/chem.202101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 11/07/2022]
Abstract
A helical metal-organic framework was prepared by using a conformationally rigid tetratopic benzoic acid ligand with binding units pointing toward each other (concave ligand). To avoid the obvious intramolecular interactions between binding units, matching spacing groups were applied to introduce atropic repulsion, thereby allowing the formation of extended frameworks for the first time. With this new ligand design, a helical-shaped MOF with significantly improved air and moisture stability was successfully prepared, thus providing a new strategy for ligand design toward porous material constructions.
Collapse
Affiliation(s)
- Kai Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Ying He
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Chuan Shan
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Junyu Ren
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX76201, USA
| | - Yu Yan
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Hanzhong Shi
- Department of Chemistry and Biomedical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Haonan Wang
- Department of Chemistry and Biomedical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Zhiguang Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
8
|
Liu M, He Y, Shan C, Wojtas L, Ghiviriga I, Fathalla O, Yan Y, Li X, Shi X. Anion mediated, tunable isoguanosine self-assemblies: decoding the conformation influence and solvent effects. Chem Sci 2021; 12:7569-7574. [PMID: 34163848 PMCID: PMC8171338 DOI: 10.1039/d1sc00988e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
Systematic investigations were performed with various substituted groups at C8 purine and ribose. A series of isoG analogs, C8-phenyl substituted isoG were synthesized and applied for Cs+ coordination. The structural proximity between purine and ribose limited pentaplex formation for C8-phenyl substituted isoG derivatives. Based on this observation, deoxy isoG derivative with modification on ribose (tert-butyldimethylsilyl ether) was applied to assemble with the Cs+ cation. Critical solvent (CDCl3 and CD3CN) and anion (BPh4 -, BARF-, and PF6 -) effects were revealed, leading to the controllable formation of various stable isoG pentaplexes, including singly charged decamer, doubly charged decamer, and 15-mer, etc. Finally, the X-ray crystal structure of [isoG20Cs3]3+(BARF-)3 was successfully obtained, which is the first example of multiple-layer deoxy isoG binding with the Cs+ cation, providing solid evidence of this new isoG ionophore beyond two-layer sandwich self-assembly.
Collapse
Affiliation(s)
- Mengjia Liu
- Department of Chemistry, University of South Florida 4202 E. Fowler Avenue Tampa Florida 33620 USA
| | - Ying He
- Department of Chemistry, University of South Florida 4202 E. Fowler Avenue Tampa Florida 33620 USA
| | - Chuan Shan
- Department of Chemistry, University of South Florida 4202 E. Fowler Avenue Tampa Florida 33620 USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida 4202 E. Fowler Avenue Tampa Florida 33620 USA
| | - Ion Ghiviriga
- Department of Chemistry, University of Florida 125 Buckman Drive Gainesville Florida 32611 USA
| | - Omar Fathalla
- Department of Chemistry, University of South Florida 4202 E. Fowler Avenue Tampa Florida 33620 USA
| | - Yu Yan
- Department of Chemistry, University of South Florida 4202 E. Fowler Avenue Tampa Florida 33620 USA
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida 4202 E. Fowler Avenue Tampa Florida 33620 USA
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518055 People's Republic of China
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida 4202 E. Fowler Avenue Tampa Florida 33620 USA
| |
Collapse
|
9
|
Zhao K, He Y, Shan C, Ren J, Wojtas L, Wang L, Li G, Song Z, Shi X. “Orthogonal‐Twisted‐Arm” Ligands for The Construction of Metal–Organic Frameworks (MOFs): New Topology and Catalytic Reactivity. Chemistry 2020; 26:16272-16276. [DOI: 10.1002/chem.202003878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/01/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Kai Zhao
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun Jilin 130012 P.R. China
| | - Ying He
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Chuan Shan
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Junyu Ren
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Lukasz Wojtas
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Li Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun Jilin 130012 P.R. China
| | - Guanghua Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun Jilin 130012 P.R. China
| | - Zhiguang Song
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun Jilin 130012 P.R. China
| | - Xiaodong Shi
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| |
Collapse
|
10
|
Zhang Y, He Y, Wojtas L, Shi X, Guo H. Construction of Supramolecular Organogel with Circularly Polarized Luminescence by Self-Assembled Guanosine Octamer. CELL REPORTS. PHYSICAL SCIENCE 2020; 1:100211. [PMID: 33179016 PMCID: PMC7654816 DOI: 10.1016/j.xcrp.2020.100211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Gel formation using guanosine self-assembly is an important process in supramolecular chemistry. Here, we report the stepwise construction of circularly polarized luminescent supramolecular organogels from self-assembled guanosine quadruplexes. A lipophilic guanosine derivative (aldG) is designed and synthesized for the formation of a well-defined G8-octamer. The diamine linkers are used to connect G8-octamer units by imine formation to facilitate the construction of the supramolecular gel networks. 1H NMR experiments show that the pre-assembled aldG8-octamer remains intact and is crucial for transparent and stiff organogel formation. With extended conjugation, the aldG organogels exhibit strong green fluorescence emission and circularly polarized properties without the assistance of any external fluorescent dyes, suggesting an alternative approach to construct molecular probes for biological and material applications.
Collapse
Affiliation(s)
- Yanbin Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
- These authors contributed equally
| | - Ying He
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
- These authors contributed equally
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
- Lead Contact
| | - Hao Guo
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| |
Collapse
|
11
|
Xiao S, Lee W, Chen F, Zavalij PY, Gutierrez O, Davis JT. Oxidation of 8-thioguanosine gives redox-responsive hydrogels and reveals intermediates in a desulfurization pathway. Chem Commun (Camb) 2020; 56:6981-6984. [PMID: 32436517 DOI: 10.1039/d0cc02926b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A disulfide made by oxidation of 8-thioguanosine is a supergelator. The hydrogels are redox-responsive, as they disassemble upon either reduction or oxidation of the S-S bond. We also identified this disulfide, and 2 other compounds, as intermediates in oxidative desulfurization of 8-thioG to guanosine.
Collapse
Affiliation(s)
- Songjun Xiao
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | | | | | | | | | | |
Collapse
|
12
|
He Y, Zhang Y, Wojtas L, Akhmedov NG, Pan Q, Guo H, Shi X. Reversed Cation Selectivity of G 8 -Octamer and G 16 -Hexadecamer towards Monovalent and Divalent Cations. Chem Asian J 2020; 15:1030-1034. [PMID: 32017419 PMCID: PMC7138703 DOI: 10.1002/asia.202000016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/27/2020] [Indexed: 01/31/2023]
Abstract
A reverse-binding-selectivity between monovalent and divalent cations was observed for two different self-assembly G16 -hexadecamer and G8 -octamer systems. The dissociation constant between G4 -quadruplex and monomer was calculated via VT-1 H NMR experiments. Quantitative energy profiles revealed entropy as the key factor for the weaker binding toward Ba2+ compared with K+ in the G8 -octamer system despite stronger ion-dipole interactions. This study is the first direct comparison of the G4 -quartet binding affinity between mono and divalent cations and will benefit future applications of G-quadruplex-related research. Further competition experiments between the G8 -octamer and 18-crown-6 with K+ demonstrated the potential of this G8 system as a new potassium receptor.
Collapse
Affiliation(s)
- Ying He
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida, 33620, United States
| | - Yanbin Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida, 33620, United States
| | - Novruz G Akhmedov
- Department of Chemistry, West Virginia University, Morgantown, WV, 26505, United States
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Hainan University, Haikou, 570228, P. R. China
| | - Hao Guo
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida, 33620, United States
| |
Collapse
|
13
|
Gonnelli A, Pieraccini S, Baldassarri EJ, Funari S, Masiero S, Ortore MG, Mariani P. Metallo-responsive self-assembly of lipophilic guanines in hydrocarbon solvents: a systematic SAXS structural characterization. NANOSCALE 2020; 12:1022-1031. [PMID: 31845695 DOI: 10.1039/c9nr08556d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lipophilic guanines (LipoGs) in aprotic solvents undergo different self-assembly processes based on different H-bonded motifs. Cylindrical nanotubes made by π-π stacked guanine tetramers (G-quadruplexes) and flat, tape-like aggregates (G-ribbons) have been observed depending on the presence of alkali metal ions. To obtain information on the structural properties and stability of these LipoG aggregates, Small-Angle X-ray Scattering (SAXS) experiments have been performed in dodecane, both in the presence and in the absence of potassium ions. As a result, the occurrence of the two different metallo-responsive architectures (nanoribbons or columnar nanotubes) was confirmed and we reported here for the first time a systematic study on the dependence of the aggregate properties on composition, temperature and molecular unit structure. Even if dodecane was selected to favour LipoG solubility, a strong tendency to self-organize into ordered lyotropic phases was indeed detected.
Collapse
Affiliation(s)
- Adriano Gonnelli
- Dipartimento di Scienze della Vita e dell'Ambiente, Biophysics Research Group, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | | | | | | | | | | | | |
Collapse
|
14
|
Wang S, Liang L, Tang J, Cai Y, Zhao C, Fang S, Wang H, Weng T, Wang L, Wang D. Label-free single-molecule identification of telomere G-quadruplexes with a solid-state nanopore sensor. RSC Adv 2020; 10:27215-27224. [PMID: 35515777 PMCID: PMC9055465 DOI: 10.1039/d0ra05083k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Telomere sequences can spontaneously form G-quadruplexes (G4) in the presence of some cations. In view of their relevance to genetic processes and potential as therapeutic-targets, hitherto, a wealth of conventional techniques have been reported for interrogation of G4 conformation diversity and corresponding folding kinetics, most of which are limited in precision and sensitivity. This work introduces a label-free solid-state nanopore (SSN) approach for the determination of inter-, intra- and tandem molecular G4 with distinct base permutation in various cation buffers with a tailored aperture and meanwhile captures the single-molecule G4 folding process. SSN translocation properties elucidated that both inter- and intramolecular G4 generated higher current blockage with longer duration than flexible homopolymer nucleotide, and intramolecular G4 are structurally more stable with higher event frequency and longer blockage time than intermolecular ones; base arrangement played weak role in translocation behaviors; the same sequences with one, two and three G4 skeletons displayed an increase in current blockage and a gradual extension in dwell time with the increase of molecule size recorded in the same nanopore. We observed the conformation change of single-molecule G4 which indicated the existence of folding/unfolding equilibration in nanopore, and real-time test suggested a gradual formation of G4 with time. Our results could provide a continued and improved understanding of the underlying relevance of structural stability and G4 folding process by utilizing SSN platform which exhibits strategic potential advances over the other methods with high spatial and temporal resolution. Nanopore detection of single-molecule G-quadruplexes.![]()
Collapse
|
15
|
Meeting report: Seventh International Meeting on Quadruplex Nucleic Acids (Changchun, P.R. China, September 6–9, 2019). Biochimie 2020; 168:100-109. [DOI: 10.1016/j.biochi.2019.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022]
|
16
|
Wu C, Zhou Y, Wang H, Hu J, Wang X. Formation of antifouling functional coating from deposition of a zwitterionic-co-nonionic polymer via “grafting to” approach. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2019.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
17
|
Powers-Riggs NE, Zuo X, Young RM, Wasielewski MR. Symmetry-Breaking Charge Separation in a Nanoscale Terrylenediimide Guanine-Quadruplex Assembly. J Am Chem Soc 2019; 141:17512-17516. [DOI: 10.1021/jacs.9b10108] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Natalia E. Powers-Riggs
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ryan M. Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R. Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
18
|
Stefan L, Monchaud D. Applications of guanine quartets in nanotechnology and chemical biology. Nat Rev Chem 2019. [DOI: 10.1038/s41570-019-0132-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|