1
|
Choi MG, Han JM, Lim H, Ahn S, Chang SK. Colorimetric pH-sensing of artificial gastric fluid using naphthalimide-based CH acids. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125166. [PMID: 39342719 DOI: 10.1016/j.saa.2024.125166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
In this study, we introduce novel colorimetric pH-sensing probes based on naphthalimide malonate derivatives. These probes were synthesized by reacting 4-bromo-1,8-naphthalimide with various malonates, including malononitrile, ethyl cyanoacetate, and diethyl malonate. Each derivative exhibited distinct pH-sensing characteristics due to their differing CH acidities. The malononitrile-based probe, NPI-N2, demonstrated pronounced chromogenic pH-signaling behavior, transitioning from colorless to red-violet, accompanied by a decrease in fluorescence intensity. Notably, NPI-N2 retained its pH-sensing capability in the presence of common metal ions, anions, and pepsin, a key component of gastric fluid. The pKa of NPI-N2 was determined to be 3.08 through pH-dependent absorbance curve fitting. To modulate the pH-sensing range, ester-nitrile (NPI-EN) and diethyl ester (NPI-E2) subunits were incorporated into the naphthalimide framework, resulting in increased pKa values of 6.73 and 10.76, respectively. The pH-signaling mechanism of NPI-N2 was elucidated by 1H and 13C NMR spectroscopy, revealing deprotonation of the malononitrile moiety and subsequent resonance extension through the naphthalimide structure. To facilitate practical pH determination, NPI-N2 was integrated into a paper-based test strip, enabling convenient and reliable pH measurement of artificial gastric fluid.
Collapse
Affiliation(s)
- Myung Gil Choi
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jeong Min Han
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyeona Lim
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sangdoo Ahn
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Suk-Kyu Chang
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
2
|
Mei M, Wu B, Wang S, Zhang F. Lanthanide-dye hybrid luminophores for advanced NIR-II bioimaging. Curr Opin Chem Biol 2024; 80:102469. [PMID: 38776764 DOI: 10.1016/j.cbpa.2024.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
In vivo luminescence imaging in the second near-infrared window (NIR-II, 1000-2000 nm) is a potent technique for observing deep-tissue life activities, leveraging reduced light scattering, minimized autofluorescence, and moderate absorption attenuation to substantially enhance image contrast. Pushing the frontiers of NIR-II luminescence imaging forward, moving from static to dynamic event visualization, monochromatic to multicolor images, and fundamental research to clinical applications, necessitates the development of novel luminophores featuring bright emission, extendable wavelength, and optimal biocompatibility. Recently, lanthanide-dye hybrid luminophores (LDHLs) are gaining increasing attention for their wavelength extensibility, molecular size, narrowband emission, mega stokes shift, long lifetime, and high photostability. In this review, we will summarize the recent advances of NIR-II LDHLs and their applications in imaging and analysis of living mammals, and discuss future challenges in designing new LDHLs for deep-tissue imaging.
Collapse
Affiliation(s)
- Mei Mei
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Bin Wu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China.
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China.
| |
Collapse
|
3
|
Wang M, Kitagawa Y, Hasegawa Y. Current Development of Lanthanide Complexes for Biomedical Applications. Chem Asian J 2024; 19:e202400038. [PMID: 38348520 DOI: 10.1002/asia.202400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Indexed: 03/01/2024]
Abstract
Luminescent molecule-based bioimaging system is widely used for precise localization and distinction of cancer/tumor cells. Luminescent lanthanide (Ln(III)) complexes offer long-lived (sub-millisecond time scale) and sharp (FWHM <10 nm) emission, arising from the forbidden 4f-4f electronic transitions. Luminescent Ln(III) complex-based bioimaging has emerged as a promising option for both in vitro and in vivo visualizations. In this mini-review, the historical development and recent significant progress of luminescent Ln(III) probes for bioapplications are introduced. The recent studies are mainly focused on three points: (i) the structural modifications of Ln(III) complexes in both macrocyclic and small ligands, (ii) the acquirement of high resolution luminescence images of cancer/tumor cells and (iii) the constructions of ratiometric biosensors. Furthermore, our recent study is explained as a new Cancer GPS (cancer grade probing for determining tumor grade through photophysical property analyses of intracellular Eu(III) complex.
Collapse
Affiliation(s)
- Mengfei Wang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Yuichi Kitagawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Yasuchika Hasegawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|
4
|
Li Y, Zhang Q, Wang Q, Wang X, Wang J, Zhu X, Chen X, Wang S, Sun X, Zhou H. Three-Four Photon Transition Mn(II) Complex Monitoring Lysosome-Related ATP in Real Time via Fluorescence Lifetime Imaging. Anal Chem 2024; 96:3535-3543. [PMID: 38353024 DOI: 10.1021/acs.analchem.3c05390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Currently, in situ monitoring of the adenosine triphosphate (ATP) level in lysosomes is critical to understand their involvement in various biological processes, but it remains difficult due to the interferences of limited targeting and low resolution of fluorescent probes. Herein, we report a classic Mn(II) probe (FX2-MnCl2) with near-infrared (NIR) nonlinear (NLO) properties, accompanied by three-four photon transition and fivefold fluorescence enhancement in the presence of ATP. FX2-MnCl2 combines with ATP through dual recognition sites of diethoxy and manganese ions to reflect slightly fluorescence lifetime change. Through the synergy of multiphoton fluorescence imaging (MP-FI) and multiphoton fluorescence lifetime imaging microscopy (MP-FLIM), it is further demonstrated that FX2-MnCl2 displays lysosome-specific targeting behavior, which can monitor lysosome-related ATP migration under NIR laser light. This work provides a novel multiphoton transformation fluorescence complex, which might be a potential candidate as a simple and straightforward biomarker of lysosome ATP in vitro for clinical diagnosis.
Collapse
Affiliation(s)
- Yaqin Li
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Qiong Zhang
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Qiqi Wang
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Xuan Wang
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Junjun Wang
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Xiaojiao Zhu
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Xingxing Chen
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Sen Wang
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Xianshun Sun
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| |
Collapse
|
5
|
Wang Y, Sadeghi S, Velayati A, Paul R, Hetzler Z, Danilov E, Ligler FS, Wei Q. Low-rate smartphone videoscopy for microsecond luminescence lifetime imaging with machine learning. PNAS NEXUS 2023; 2:pgad313. [PMID: 37829844 PMCID: PMC10566544 DOI: 10.1093/pnasnexus/pgad313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Time-resolved techniques have been widely used in time-gated and luminescence lifetime imaging. However, traditional time-resolved systems require expensive lab equipment such as high-speed excitation sources and detectors or complicated mechanical choppers to achieve high repetition rates. Here, we present a cost-effective and miniaturized smartphone lifetime imaging system integrated with a pulsed ultraviolet (UV) light-emitting diode (LED) for 2D luminescence lifetime imaging using a videoscopy-based virtual chopper (V-chopper) mechanism combined with machine learning. The V-chopper method generates a series of time-delayed images between excitation pulses and smartphone gating so that the luminescence lifetime can be measured at each pixel using a relatively low acquisition frame rate (e.g. 30 frames per second [fps]) without the need for excitation synchronization. Europium (Eu) complex dyes with different luminescent lifetimes ranging from microseconds to seconds were used to demonstrate and evaluate the principle of V-chopper on a 3D-printed smartphone microscopy platform. A convolutional neural network (CNN) model was developed to automatically distinguish the gated images in different decay cycles with an accuracy of >99.5%. The current smartphone V-chopper system can detect lifetime down to ∼75 µs utilizing the default phase shift between the smartphone video rate and excitation pulses and in principle can detect much shorter lifetimes by accurately programming the time delay. This V-chopper methodology has eliminated the need for the expensive and complicated instruments used in traditional time-resolved detection and can greatly expand the applications of time-resolved lifetime technologies.
Collapse
Affiliation(s)
- Yan Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Sina Sadeghi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Alireza Velayati
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Rajesh Paul
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Zach Hetzler
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Evgeny Danilov
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Frances S Ligler
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
6
|
Ci Q, Wang Y, Wu B, Coy E, Li JJ, Jiang D, Zhang P, Wang G. Fe-Doped Carbon Dots as NIR-II Fluorescence Probe for In Vivo Gastric Imaging and pH Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206271. [PMID: 36596672 PMCID: PMC9982550 DOI: 10.1002/advs.202206271] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Indexed: 05/20/2023]
Abstract
Carbon dots (CDs) with excellent cytocompatibility, tunable optical properties, and simple synthesis routes are highly desirable for use in optical bioimaging. However, the majority of existing CDs are triggered by ultraviolet/blue light, presenting emissions in the visible/first near-infrared (NIR-I) regions, which do not allow deep tissue penetration. Emerging research into CDs with NIR-II emission in the red region has generated limited designs with poor quantum yield, restricting their in vivo imaging applications due to low penetration depth. Developing novel CDs with NIR-II emissions and high quantum yield has significant and far-reaching applications in bioimaging and photodynamic therapy. Here, it is developed for the first time Fe-doped CDs (Fe-CDs) exhibiting the excellent linear relationship between 900-1200 nm fluorescence-emission and pH values, and high quantum yield (QY-1.27%), which can be used as effective probes for in vivo NIR-II bioimaging. These findings demonstrate reliable imaging accuracy in tissue as deep as 4 mm, reflecting real-time pH changes comparable to a standard pH electrode. As an important example application, the Fe-CDs probe can non-invasively monitor in vivo gastric pH changes during the digestion process in mice, illustrating its potential applications in aiding imaging-guided diagnosis of gastric diseases or therapeutic delivery.
Collapse
Affiliation(s)
- Qiaoqiao Ci
- Research Center for Human Tissues and Organs DegenerationShenzhen Institute of Advanced TechnologyChinese Academy of ScienceShenzhenGuangdong518055China
| | - Yuanyuan Wang
- Guangdong Key Laboratory of NanomedicineCAS‐HK Joint Lab of BiomaterialsShenzhen Engineering Laboratory of Nanomedicine and NanoformulationsInstitute of Biomedicine and BiotechnologyShenzhen Institute of Advanced TechnologyChinese Academy of ScienceShenzhenGuangdong518055China
| | - Ben Wu
- Research Center for Human Tissues and Organs DegenerationShenzhen Institute of Advanced TechnologyChinese Academy of ScienceShenzhenGuangdong518055China
| | - Emerson Coy
- NanoBioMedical CentreAdam Mickiewicz UniversityWszechnicy Piastowskiej 3Poznan61–614Poland
| | - Jiao jiao Li
- School of Biomedical EngineeringFaculty of Engineering and ITUniversity of Technology SydneyUltimoNSW2007Australia
| | - Daoyong Jiang
- Guangdong Key Laboratory of NanomedicineCAS‐HK Joint Lab of BiomaterialsShenzhen Engineering Laboratory of Nanomedicine and NanoformulationsInstitute of Biomedicine and BiotechnologyShenzhen Institute of Advanced TechnologyChinese Academy of ScienceShenzhenGuangdong518055China
| | - Pengfei Zhang
- Guangdong Key Laboratory of NanomedicineCAS‐HK Joint Lab of BiomaterialsShenzhen Engineering Laboratory of Nanomedicine and NanoformulationsInstitute of Biomedicine and BiotechnologyShenzhen Institute of Advanced TechnologyChinese Academy of ScienceShenzhenGuangdong518055China
| | - Guocheng Wang
- Research Center for Human Tissues and Organs DegenerationShenzhen Institute of Advanced TechnologyChinese Academy of ScienceShenzhenGuangdong518055China
| |
Collapse
|
7
|
Practical Guidance for Developing Small-Molecule Optical Probes for In Vivo Imaging. Mol Imaging Biol 2023; 25:240-264. [PMID: 36745354 DOI: 10.1007/s11307-023-01800-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 02/07/2023]
Abstract
The WMIS Education Committee (2019-2022) reached a consensus that white papers on molecular imaging could be beneficial for practitioners of molecular imaging at their early career stages and other scientists who are interested in molecular imaging. With this consensus, the committee plans to publish a series of white papers on topics related to the daily practice of molecular imaging. In this white paper, we aim to provide practical guidance that could be helpful for optical molecular imaging, particularly for small molecule probe development and validation in vitro and in vivo. The focus of this paper is preclinical animal studies with small-molecule optical probes. Near-infrared fluorescence imaging, bioluminescence imaging, chemiluminescence imaging, image-guided surgery, and Cerenkov luminescence imaging are discussed in this white paper.
Collapse
|
8
|
Xian T, Meng Q, Gao F, Hu M, Wang X. Functionalization of luminescent lanthanide complexes for biomedical applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Liu Y, Wang Z, Miao K, Zhang X, Li W, Zhao P, Sun P, Zheng T, Zhang X, Chen C. Research progress on near-infrared long persistent phosphor materials in biomedical applications. NANOSCALE ADVANCES 2022; 4:4972-4996. [PMID: 36504755 PMCID: PMC9680941 DOI: 10.1039/d2na00426g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/22/2022] [Indexed: 06/17/2023]
Abstract
After excitation is stopped, long persistent phosphor materials (LPPs) can emit light for a long time. The most important feature is that it allows the separation of excitation and emission in time. Therefore, it plays a vital role in various fields such as data storage, information technology, and biomedicine. Owing to the unique mechanism of storage and luminescence, LPPs can avoid the interference of sample autofluorescence, as well as show strong tissue penetration ability, good afterglow performance, and rich spectral information in the near-infrared (NIR) region, which provides a broad prospect for the application of NIR LPPs in the field of biomedicine. In recent years, the development and applications in biomedical fields have been advanced significantly, such as biological imaging, sensing detection, and surgical guidance. In this review, we focus on the synthesis methods and luminescence mechanisms of different types of NIR LPPs, as well as their applications in bioimaging, biosensing detection, and cancer treatment in the field of biomedicine. Finally, future prospects and challenges of NIR LPPs in biomedical applications are also discussed.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Zengxue Wang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Kun Miao
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Xundi Zhang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Wei Li
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Pan Zhao
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Peng Sun
- Innovative of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Tingting Zheng
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Xiuyun Zhang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 Shandong China
| | - Chen Chen
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| |
Collapse
|
10
|
Wang Q, Li Y, Xiao D, Zang Z, Jiao Z, Chen Y, Li DDU. Simple and Robust Deep Learning Approach for Fast Fluorescence Lifetime Imaging. SENSORS (BASEL, SWITZERLAND) 2022; 22:7293. [PMID: 36236390 PMCID: PMC9572653 DOI: 10.3390/s22197293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Fluorescence lifetime imaging (FLIM) is a powerful tool that provides unique quantitative information for biomedical research. In this study, we propose a multi-layer-perceptron-based mixer (MLP-Mixer) deep learning (DL) algorithm named FLIM-MLP-Mixer for fast and robust FLIM analysis. The FLIM-MLP-Mixer has a simple network architecture yet a powerful learning ability from data. Compared with the traditional fitting and previously reported DL methods, the FLIM-MLP-Mixer shows superior performance in terms of accuracy and calculation speed, which has been validated using both synthetic and experimental data. All results indicate that our proposed method is well suited for accurately estimating lifetime parameters from measured fluorescence histograms, and it has great potential in various real-time FLIM applications.
Collapse
Affiliation(s)
- Quan Wang
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G4 0RU, UK
| | - Yahui Li
- Key Laboratory of Ultra-Fast Photoelectric Diagnostics Technology, Xi’an Institute of Optics and Precision Mechanics, Xi’an 710049, China
| | - Dong Xiao
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G4 0RU, UK
| | - Zhenya Zang
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G4 0RU, UK
| | - Zi’ao Jiao
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G4 0RU, UK
| | - Yu Chen
- Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
| | - David Day Uei Li
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G4 0RU, UK
| |
Collapse
|
11
|
Qi YL, Wang HR, Chen LL, Duan YT, Yang SY, Zhu HL. Recent advances in small-molecule fluorescent probes for studying ferroptosis. Chem Soc Rev 2022; 51:7752-7778. [PMID: 36052828 DOI: 10.1039/d1cs01167g] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ferroptosis is an iron-dependent, non-apoptotic form of programmed cell death driven by excessive lipid peroxidation (LPO). Mounting evidence suggests that the unique modality of cell death is involved in the development and progression of several diseases including cancer, cardiovascular diseases (CVDs), neurodegenerative disorders, etc. However, the pathogenesis and signalling pathways of ferroptosis are not fully understood, possibly due to the lack of robust tools for the highly selective and sensitive imaging of ferroptosis analytes in complex living systems. Up to now, various small-molecule fluorescent probes have been applied as promising chemosensors for studying ferroptosis through tracking the biomolecules or microenvironment-related parameters in vitro and in vivo. In this review, we comprehensively reviewed the recent development of small-molecule fluorescent probes for studying ferroptosis, with a focus on the analytes, design strategies and bioimaging applications. We also provided new insights to overcome the major challenges in this emerging field.
Collapse
Affiliation(s)
- Ya-Lin Qi
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China. .,Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.,Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA.
| | - Hai-Rong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Li-Li Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yong-Tao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China. .,Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Sheng-Yu Yang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA.
| | - Hai-Liang Zhu
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China. .,Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
12
|
Jin G, Sun D, Xia X, Jiang Z, Cheng B, Ning Y, Wang F, Zhao Y, Chen X, Zhang J. Bioorthogonal Lanthanide Molecular Probes for Near‐Infrared Fluorescence and Mass Spectrometry Imaging. Angew Chem Int Ed Engl 2022; 61:e202208707. [DOI: 10.1002/anie.202208707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Guo‐Qing Jin
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 P. R. China
| | - De‐en Sun
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 P. R. China
- Synthetic and Functional Biomolecules Center Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 P. R. China
| | - Xiaoqian Xia
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 P. R. China
- Synthetic and Functional Biomolecules Center Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 P. R. China
| | - Zhi‐Fan Jiang
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 P. R. China
| | - Bo Cheng
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 P. R. China
- Synthetic and Functional Biomolecules Center Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 P. R. China
| | - Yingying Ning
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 P. R. China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences National Centre for Mass Spectrometry in Beijing CAS Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences National Centre for Mass Spectrometry in Beijing CAS Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xing Chen
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 P. R. China
- Synthetic and Functional Biomolecules Center Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 P. R. China
- Peking-Tsinghua Center for Life Sciences Beijing 100871 P. R. China
| | - Jun‐Long Zhang
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 P. R. China
| |
Collapse
|
13
|
Jin GQ, Sun DE, Xia X, Jiang ZF, Cheng B, Ning Y, Wang F, Zhao Y, Chen X, Zhang JL. Bioorthogonal Lanthanide Molecular Probes for Near‐Infrared Fluorescence and Mass Spectrometry Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guo-Qing Jin
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - De-en Sun
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Xiaoqian Xia
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Zhi-Fan Jiang
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Bo Cheng
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Yingying Ning
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Fuyi Wang
- Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory for Molecular Sciences CHINA
| | - Yao Zhao
- Institute of Chemistry Chinese Academy of Sciences Beijing National Laboratory for Molecular Sciences CHINA
| | - Xing Chen
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Jun-Long Zhang
- Peking University College of Chemistry and Molecular Engineering Chengfu Road 202 100871 Beijing CHINA
| |
Collapse
|
14
|
Jia H, Liu Y, Hu JJ, Li G, Lou X, Xia F. Lifetime-Based Responsive Probes: Design and Applications in Biological Analysis. Chem Asian J 2022; 17:e202200563. [PMID: 35916038 DOI: 10.1002/asia.202200563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/26/2022] [Indexed: 11/10/2022]
Abstract
With the development of modern biomedicine, biological analysis and detection are very important in disease diagnosis, detection of curative effect, prognosis and prediction of tumor recurrence. Compared with the currently widely used optical probes based on intensity signals, the lifetime signal does not depend on the influence of conditions such as the concentration of luminophore, tissue penetration depth and measurement method. Therefore, biological detection methods based on lifetime-based responsive probes have attracted great attention from the scientific community. Here, we briefly review the key advances in lifetime-based responsive probes in recent years (2017-2022). The review focuses on the design strategies of lifetime-based responsive probes and the research progress of their applications in the field of bioanalysis, and discusses the challenges they face. We hope it will further promote the development of lifetime-based responsive probes in the field of bioanalysis. With the development of modern biomedicine, biological analysis and detection are very important in disease diagnosis, detection of curative effect, prognosis and prediction of tumor recurrence. Compared with the currently widely used optical probes based on intensity signals, the lifetime signal does not depend on the influence of conditions such as the concentration of luminophore, tissue penetration depth and measurement method. Therefore, biological detection methods based on lifetime-based responsive probes have attracted great attention from the scientific community. Here, we briefly review the key advances in lifetime-based responsive probes in recent years (2017-2022). The review focuses on the design strategies of lifetime-based responsive probes and the research progress of their applications in the field of bioanalysis, and discusses the challenges they face. We hope it will further promote the development of lifetime-based responsive probes in the field of bioanalysis.
Collapse
Affiliation(s)
- Hui Jia
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Yiheng Liu
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Jing-Jing Hu
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Guogang Li
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Xiaoding Lou
- China University of Geosciences, Faculty of Materials Science and Chemistry, 388 Lumo Road, Wuhan 430074, P. R. China, 430074, wuhan, CHINA
| | - Fan Xia
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| |
Collapse
|
15
|
Jin GQ, Chau CV, Arambula JF, Gao S, Sessler JL, Zhang JL. Lanthanide porphyrinoids as molecular theranostics. Chem Soc Rev 2022; 51:6177-6209. [PMID: 35792133 DOI: 10.1039/d2cs00275b] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In recent years, lanthanide (Ln) porphyrinoids have received increasing attention as theranostics. Broadly speaking, the term 'theranostics' refers to agents designed to allow both disease diagnosis and therapeutic intervention. This Review summarises the history and the 'state-of-the-art' development of Ln porphyrinoids as theranostic agents. The emphasis is on the progress made within the past decade. Applications of Ln porphyrinoids in near-infrared (NIR, 650-1700 nm) fluorescence imaging (FL), magnetic resonance imaging (MRI), radiotherapy, and chemotherapy will be discussed. The use of Ln porphyrinoids as photo-activated agents ('phototheranostics') will also be highlighted in the context of three promising strategies for regulation of porphyrinic triplet energy dissipation pathways, namely: regioisomeric effects, metal regulation, and the use of expanded porphyrinoids. The goal of this Review is to showcase some of the ongoing efforts being made to optimise Ln porphyrinoids as theranostics and as phototheranostics, in order to provide a platform for understanding likely future developments in the area, including those associated with structure-based innovations, functional improvements, and emerging biological activation strategies.
Collapse
Affiliation(s)
- Guo-Qing Jin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
| | - Calvin V Chau
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Jonathan F Arambula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA. .,InnovoTEX, Inc. 3800 N. Lamar Blvd, Austin, Texas 78756, USA.
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China. .,Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China.,Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China. .,Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China
| |
Collapse
|
16
|
Luminescent Metal Complexes for Bioassays in the Near-Infrared (NIR) Region. Top Curr Chem (Cham) 2022; 380:31. [PMID: 35715540 DOI: 10.1007/s41061-022-00386-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
Abstract
Near-infrared (NIR, 700-1700 nm) luminescent imaging is an emerging bioimaging technology with low photon scattering, minimal autofluorescence, deep tissue penetration, and high spatiotemporal resolution that has shown fascinating promise for NIR imaging-guided theranostics. In recent progress, NIR luminescent metal complexes have attracted substantially increased research attention owing to their intrinsic merits, including small size, anti-photobleaching, long lifetime, and metal-centered NIR emission. In the past decade, scientists have contributed to the advancement of NIR metal complexes involving efforts to improve photophysical properties, biocompatibility, specificity, pharmacokinetics, in vivo visualization, and attempts to exploit new ligand platforms. Herein, we summarize recent progress and provide future perspectives for NIR metal complexes, including d-block transition metals and f-block lanthanides (Ln) as NIR optical molecular probes for bioassays.
Collapse
|
17
|
Monteiro JHSK, Fetto NR, Tucker MJ, Sigoli FA, de Bettencourt-Dias A. Carbazole-Functionalized Dipicolinato Ln III Complexes Show Two-Photon Excitation and Viscosity-Sensitive Metal-Centered Emission. JOURNAL OF LUMINESCENCE 2022; 245:118768. [PMID: 35422532 PMCID: PMC9004684 DOI: 10.1016/j.jlumin.2022.118768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
EuIII and YbIII complexes with the carbazole-dipicolinato ligand dpaCbz2-, namely K3[Eu(dpaCbz)3] and K3[Yb(dpaCbz)3], were isolated. The EuIII complex displayed metal-centred emission upon one-photon excitation with a sensitized emission efficiency Φ L Ln of 1.8±0.3 %, corresponding to an intrinsic emission efficiency Φ Ln Ln of 46% and a sensitization efficiency of ηsens 3.9%, with an emission lifetime of the emissive state τ of 1.087±0.005 ms. The YbIII complex displayed Φ L Ln of 0.010±0.001 %, and a τ of 2.32±0.06 μs. The EuIII-centred emission was sensitized as well upon two-photon excitation and a two-photon absorption cross-section σ2PA of 63 GM at 750 nm was determined for the complex. The one- or two-photon sensitized emission intensity of the EuIII complex changes by more than two-fold when the solvent viscosity is varied in the range 0.5 - 200 cP and the emission is independent of dissolved oxygen. The YbIII complex displays a change in emission intensity as well. However, in this case, a dependence of the emission intensity on dissolved oxygen content was observed.
Collapse
Affiliation(s)
- Jorge H S K Monteiro
- Department of Chemistry, University of Nevada, Reno, NV, 89557 United States
- current address: Department of Chemistry, Humboldt State University, Arcata CA, 95521 United States
| | - Natalie R Fetto
- Department of Chemistry, University of Nevada, Reno, NV, 89557 United States
- current address: Department of Chemistry, Biochemistry and Physics, The University of Tampa, Tampa, FL 33606 United States
| | - Matthew J Tucker
- Department of Chemistry, University of Nevada, Reno, NV, 89557 United States
| | - Fernando A Sigoli
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, 13083-970 Brazil
| | | |
Collapse
|
18
|
Nizam NI, Ochoa M, Smith JT, Gao S, Intes X. Monte Carlo-based data generation for efficient deep learning reconstruction of macroscopic diffuse optical tomography and topography applications. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:083016. [PMID: 35484688 PMCID: PMC9048385 DOI: 10.1117/1.jbo.27.8.083016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
SIGNIFICANCE Deep learning (DL) models are being increasingly developed to map sensor data to the image domain directly. However, DL methodologies are data-driven and require large and diverse data sets to provide robust and accurate image formation performances. For research modalities such as 2D/3D diffuse optical imaging, the lack of large publicly available data sets and the wide variety of instrumentation designs, data types, and applications leads to unique challenges in obtaining well-controlled data sets for training and validation. Meanwhile, great efforts over the last four decades have focused on developing accurate and computationally efficient light propagation models that are flexible enough to simulate a wide variety of experimental conditions. AIM Recent developments in Monte Carlo (MC)-based modeling offer the unique advantage of simulating accurately light propagation spatially, temporally, and over an extensive range of optical parameters, including minimally to highly scattering tissue within a computationally efficient platform. Herein, we demonstrate how such MC platforms, namely "Monte Carlo eXtreme" and "Mesh-based Monte Carlo," can be leveraged to generate large and representative data sets for training the DL model efficiently. APPROACH We propose data generator pipeline strategies using these platforms and demonstrate their potential in fluorescence optical topography, fluorescence optical tomography, and single-pixel diffuse optical tomography. These applications represent a large variety in instrumentation design, sample properties, and contrast function. RESULTS DL models trained using the MC-based in silico datasets, validated further with experimental data not used during training, show accurate and promising results. CONCLUSION Overall, these MC-based data generation pipelines are expected to support the development of DL models for rapid, robust, and user-friendly image formation in a wide variety of applications.
Collapse
Affiliation(s)
- Navid Ibtehaj Nizam
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, Troy, New York, United States
| | - Marien Ochoa
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, Troy, New York, United States
| | - Jason T. Smith
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, Troy, New York, United States
| | - Shan Gao
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, Troy, New York, United States
| | - Xavier Intes
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, Troy, New York, United States
| |
Collapse
|
19
|
Shimolina L, Potekhina E, Druzhkova I, Lukina M, Dudenkova V, Belousov V, Shcheslavskiy V, Zagaynova E, Shirmanova M. Fluorescence lifetime-based pH mapping of tumors in vivo using new genetically encoded sensor SypHerRed. Biophys J 2022; 121:1156-1165. [PMID: 35218737 PMCID: PMC9034243 DOI: 10.1016/j.bpj.2022.02.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 02/22/2022] [Indexed: 11/18/2022] Open
Abstract
Changes in intracellular pH (pHi) reflect metabolic states of cancer cells during tumor growth and dissemination. Therefore, monitoring of pH is essential for understanding the metabolic mechanisms that support cancer progression. Genetically encoded fluorescent pH sensors have become irreplaceable tools for real-time tracking pH in particular subcellular compartments of living cells. However, ratiometric readout of most of the pH probes is poorly suitable to measure pH in thick samples ex vivo or tissues in vivo including solid tumors. Fluorescence lifetime imaging (FLIM) is a promising alternative to the conventional fluorescent microscopy as it much less depends on light scattering in thick samples. Here, we present a quantitative approach to map intracellular pH in cancer cells and tumors in vivo, relying on fluorescence lifetime readout of a genetically encoded pH sensor SypHerRed. We demonstrate the utility of SypHerRed in visualizing pHi in cancer cell culture and in mouse tumor xenografts using FLIM-microscopy and macroscopy. For the first time, the absolute pHi value is obtained for tumors in vivo by an optical technique. In addition, we demonstrate the possibility of simultaneous detection of pH and endogenous fluorescence of metabolic cofactor NADH, which provides a complementary insight into metabolic aspects of cancer. Fluorescence lifetime-based readout and red-shifted spectra make pH sensor SypHerRed a promising instrument for multiparameter in vivo imaging applications.
Collapse
Affiliation(s)
- Liubov Shimolina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia; Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Ekaterina Potekhina
- Pirogov Russian National Research Medical University, Laboratory of Experimental Oncology, Moscow, Russia
| | - Irina Druzhkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Maria Lukina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Varvara Dudenkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Vsevolod Belousov
- Pirogov Russian National Research Medical University, Laboratory of Experimental Oncology, Moscow, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, Russia
| | - Vladislav Shcheslavskiy
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia; Becker&Hickl GmbH, Nunsdorfer Ring 7-9, 12277 Berlin, Germany.
| | - Elena Zagaynova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Marina Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia.
| |
Collapse
|
20
|
Wang M, Hu C, Su Q. Luminescent Lifetime Regulation of Lanthanide-Doped Nanoparticles for Biosensing. BIOSENSORS 2022; 12:131. [PMID: 35200391 PMCID: PMC8869906 DOI: 10.3390/bios12020131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 05/16/2023]
Abstract
Lanthanide-doped nanoparticles possess numerous advantages including tunable luminescence emission, narrow peak width and excellent optical and thermal stability, especially concerning the long lifetime from microseconds to milliseconds. Differing from other shorter-lifetime fluorescent nanomaterials, the long lifetime of lanthanide-doped nanomaterials is independent with background fluorescence interference and biological tissue depth. This review presents the recent advances in approaches to regulating the lifetime and applications of bioimaging and biodetection. We begin with the introduction of the strategies for regulating the lifetime by modulating the core-shell structure, adjusting the concentration of sensitizer and emitter, changing energy transfer channel, establishing a fluorescence resonance energy transfer pathway and changing temperature. We then summarize the applications of these nanoparticles in biosensing, including ion and molecule detecting, DNA and protease detection, cell labeling, organ imaging and thermal and pH sensing. Finally, the prospects and challenges of the lanthanide lifetime regulation for fundamental research and practical applications are also discussed.
Collapse
Affiliation(s)
- Mingkai Wang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Chuanyu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Qianqian Su
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
21
|
Li B, Lin J, Huang P, Chen X. Near-infrared probes for luminescence lifetime imaging. Nanotheranostics 2022; 6:91-102. [PMID: 34976583 PMCID: PMC8671960 DOI: 10.7150/ntno.63124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Biomedical luminescence imaging in the near-infrared (NIR, 700-1700 nm) region has shown great potential in visualizing biological processes and pathological conditions at cellular and animal levels, owing to the reduced tissue absorption and scattering compared to light in the visible (400-700 nm) region. To overcome the background interference and signal attenuation during intensity-based luminescence imaging, lifetime imaging has demonstrated a reliable imaging modality complementary to intensity measurement. Several selective or environment-responsive probes have been successfully developed for luminescence lifetime imaging and multiplex detection. This review summarizes recent advances in the application of luminescence lifetime imaging at cellular and animal levels in NIR-I and NIR-II regions. Finally, the challenges and further directions of luminescence lifetime imaging are also discussed.
Collapse
Affiliation(s)
- Benhao Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
22
|
Becker L, Janssen N, Layland SL, Mürdter TE, Nies AT, Schenke-Layland K, Marzi J. Raman Imaging and Fluorescence Lifetime Imaging Microscopy for Diagnosis of Cancer State and Metabolic Monitoring. Cancers (Basel) 2021; 13:cancers13225682. [PMID: 34830837 PMCID: PMC8616063 DOI: 10.3390/cancers13225682] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Hurdles for effective tumor therapy are delayed detection and limited effectiveness of systemic drug therapies by patient-specific multidrug resistance. Non-invasive bioimaging tools such as fluorescence lifetime imaging microscopy (FLIM) and Raman-microspectroscopy have evolved over the last decade, providing the potential to be translated into clinics for early-stage disease detection, in vitro drug screening, and drug efficacy studies in personalized medicine. Accessing tissue- and cell-specific spectral signatures, Raman microspectroscopy has emerged as a diagnostic tool to identify precancerous lesions, cancer stages, or cell malignancy. In vivo Raman measurements have been enabled by recent technological advances in Raman endoscopy and signal-enhancing setups such as coherent anti-stokes Raman spectroscopy or surface-enhanced Raman spectroscopy. FLIM enables in situ investigations of metabolic processes such as glycolysis, oxidative stress, or mitochondrial activity by using the autofluorescence of co-enzymes NADH and FAD, which are associated with intrinsic proteins as a direct measure of tumor metabolism, cell death stages and drug efficacy. The combination of non-invasive and molecular-sensitive in situ techniques and advanced 3D tumor models such as patient-derived organoids or microtumors allows the recapitulation of tumor physiology and metabolism in vitro and facilitates the screening for patient-individualized drug treatment options.
Collapse
Affiliation(s)
- Lucas Becker
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Nicole Janssen
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, 72076 Tübingen, Germany
| | - Shannon L Layland
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas E Mürdter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, 72076 Tübingen, Germany
| | - Anne T Nies
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, 72076 Tübingen, Germany
| | - Katja Schenke-Layland
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
- Cardiovascular Research Laboratories, Department of Medicine/Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90073, USA
| | - Julia Marzi
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| |
Collapse
|
23
|
Ning Y, Jin GQ, Wang MX, Gao S, Zhang JL. Recent progress in metal-based molecular probes for optical bioimaging and biosensing. Curr Opin Chem Biol 2021; 66:102097. [PMID: 34775149 DOI: 10.1016/j.cbpa.2021.102097] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022]
Abstract
Biological imaging and biosensing from subcellular/cellular level to whole body have enabled non-invasive visualisation of molecular events during various biological and pathological processes, giving great contributions to the rapid and impressive advances in chemical biology, drug discovery, disease diagnosis and prognosis. Optical imaging features a series of merits, including convenience, high resolution, good sensitivity, low cost and the absence of ionizing radiation. Among different luminescent probes, metal-based molecules offer unique promise in optical bioimaging and biosensing in vitro and in vivo, arising from their small sizes, strong luminescence, large Stokes shifts, long lifetimes, high photostability and tunable toxicity. In this review, we aim to highlight the design of metal-based molecular probes from the standpoint of synthetic chemistry in the last 2 years for optical imaging, covering d-block transition metal and lanthanide complexes and multimodal imaging agents.
Collapse
Affiliation(s)
- Yingying Ning
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China; Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i(3)), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, 02129, USA
| | - Guo-Qing Jin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China
| | - Meng-Xin Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, PR China; Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, PR China.
| |
Collapse
|
24
|
Abstract
Optical imaging is an indispensable tool in clinical diagnostics and fundamental biomedical research. Autofluorescence-free optical imaging, which eliminates real-time optical excitation to minimize background noise, enables clear visualization of biological architecture and physiopathological events deep within living subjects. Molecular probes especially developed for autofluorescence-free optical imaging have been proven to remarkably improve the imaging sensitivity, penetration depth, target specificity, and multiplexing capability. In this Review, we focus on the advancements of autofluorescence-free molecular probes through the lens of particular molecular or photophysical mechanisms that produce long-lasting luminescence after the cessation of light excitation. The versatile design strategies of these molecular probes are discussed along with a broad range of biological applications. Finally, challenges and perspectives are discussed to further advance the next-generation autofluorescence-free molecular probes for in vivo imaging and in vitro biosensors.
Collapse
Affiliation(s)
- Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
25
|
Chan WL, Xie C, Lo WS, Bünzli JCG, Wong WK, Wong KL. Lanthanide-tetrapyrrole complexes: synthesis, redox chemistry, photophysical properties, and photonic applications. Chem Soc Rev 2021; 50:12189-12257. [PMID: 34553719 DOI: 10.1039/c9cs00828d] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tetrapyrrole derivatives such as porphyrins, phthalocyanines, naphthalocyanines, and porpholactones, are highly stable macrocyclic compounds that play important roles in many phenomena linked to the development of life. Their complexes with lanthanides are known for more than 60 years and present breath-taking properties such as a range of easily accessible redox states leading to photo- and electro-chromism, paramagnetism, large non-linear optical parameters, and remarkable light emission in the visible and near-infrared (NIR) ranges. They are at the centre of many applications with an increasing focus on their ability to generate singlet oxygen for photodynamic therapy coupled with bioimaging and biosensing properties. This review first describes the synthetic paths leading to lanthanide-tetrapyrrole complexes together with their structures. The initial synthetic protocols were plagued by low yields and long reaction times; they have now been replaced with much more efficient and faster routes, thanks to the stunning advances in synthetic organic chemistry, so that quite complex multinuclear edifices are presently routinely obtained. Aspects such as redox properties, sensitization of NIR-emitting lanthanide ions, and non-linear optical properties are then presented. The spectacular improvements in the quantum yield and brightness of YbIII-containing tetrapyrrole complexes achieved in the past five years are representative of the vitality of the field and open welcome opportunities for the bio-applications described in the last section. Perspectives for the field are vast and exciting as new derivatizations of the macrocycles may lead to sensitization of other LnIII NIR-emitting ions with luminescence in the NIR-II and NIR-III biological windows, while conjugation with peptides and aptamers opens the way for lanthanide-tetrapyrrole theranostics.
Collapse
Affiliation(s)
- Wai-Lun Chan
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China. .,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Chen Xie
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| | - Wai-Sum Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Jean-Claude G Bünzli
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China. .,Institute of Chemical Sciences & Engineering, Swiss Federal Institute of Technology, Lausanne (EPFL), Switzerland.
| | - Wai-Kwok Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| |
Collapse
|
26
|
KALITA PANKAJ, GOURA JOYDEB, NAYAK PRAKASH, COLACIO ENRIQUE, CHANDRASEKHAR VADAPALLI. Octanuclear {Ln8} complexes: magneto-caloric effect in the {Gd8} analogue. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01920-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Ma DL, Wu C, Liu H, Wu KJ, Leung CH. Luminescence approaches for the rapid detection of disease-related receptor proteins using transition metal-based probes. J Mater Chem B 2021; 8:3249-3260. [PMID: 31647090 DOI: 10.1039/c9tb01889a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein biomarkers, particularly abnormally expressed receptor proteins, have been proved to be one of the crucial biomarkers for the rapid assessment, diagnosis, prognosis and prediction of specific human diseases. Transition metal based strategies in particular possess delightful strengths in the in-field and real-time visualization of receptor proteins owing to their unique photophysical properties. In this review, we highlight recent advances in the development of detection methods for receptor protein biomarkers using transition metal based approaches, particularly those employing transition metal complexes. We first discuss the strengths and weaknesses of various strategies used for protein biomarker monitoring in live cells. We then describe the principles of the various sensing platforms and their application for receptor protein detection. Finally, we discuss the challenges and future inspirations in this specific field.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China.
| | | | | | | | | |
Collapse
|
28
|
Li Y, Tian J, Li DDU. Theoretical investigations of a modified compressed ultrafast photography method suitable for single-shot fluorescence lifetime imaging. APPLIED OPTICS 2021; 60:1476-1483. [PMID: 33690594 DOI: 10.1364/ao.415594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
A single-shot fluorescence lifetime imaging (FLIM) method based on the compressed ultrafast photography (CUP) is proposed, named space-restricted CUP (srCUP). srCUP is suitable for imaging objects moving slowly (<∼150/Mmm/s, M is the magnification of the objective lens) in the field of view with the intensity changing within nanoseconds in a measurement window around 10 ns. We used synthetic datasets to explore the performances of srCUP compared with CUP and TCUP (a variant of CUP). srCUP not only provides superior reconstruction performances, but its reconstruction speed is also twofold and threefold faster than CUP and TCUP, respectively. The lifetime determination performances were assessed by estimating lifetime components, amplitude- and intensity-weighted average lifetimes (τA and τI), with the reconstructed scenes using the least squares method based on a bi-exponential model. srCUP has the best accuracy and precision for lifetime determinations with a relative bias less than 7% and a coefficient of variation less than 7% for τA, and a relative bias less than 10% and a coefficient of variation less than 11% for τI.
Collapse
|
29
|
Norel L, Galangau O, Al Sabea H, Rigaut S. Remote Control of Near Infrared Emission with Lanthanide Complexes. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202000248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lucie Norel
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226 F-35000 Rennes France
| | - Olivier Galangau
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226 F-35000 Rennes France
| | - Hassan Al Sabea
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226 F-35000 Rennes France
| | - Stéphane Rigaut
- Univ Rennes, CNRS ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226 F-35000 Rennes France
| |
Collapse
|
30
|
He Z, Wang P, Ye X. Novel endoscopic optical diagnostic technologies in medical trial research: recent advancements and future prospects. Biomed Eng Online 2021; 20:5. [PMID: 33407477 PMCID: PMC7789310 DOI: 10.1186/s12938-020-00845-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Novel endoscopic biophotonic diagnostic technologies have the potential to non-invasively detect the interior of a hollow organ or cavity of the human body with subcellular resolution or to obtain biochemical information about tissue in real time. With the capability to visualize or analyze the diagnostic target in vivo, these techniques gradually developed as potential candidates to challenge histopathology which remains the gold standard for diagnosis. Consequently, many innovative endoscopic diagnostic techniques have succeeded in detection, characterization, and confirmation: the three critical steps for routine endoscopic diagnosis. In this review, we mainly summarize researches on emerging endoscopic optical diagnostic techniques, with emphasis on recent advances. We also introduce the fundamental principles and the development of those techniques and compare their characteristics. Especially, we shed light on the merit of novel endoscopic imaging technologies in medical research. For example, hyperspectral imaging and Raman spectroscopy provide direct molecular information, while optical coherence tomography and multi-photo endomicroscopy offer a more extensive detection range and excellent spatial-temporal resolution. Furthermore, we summarize the unexplored application fields of these endoscopic optical techniques in major hospital departments for biomedical researchers. Finally, we provide a brief overview of the future perspectives, as well as bottlenecks of those endoscopic optical diagnostic technologies. We believe all these efforts will enrich the diagnostic toolbox for endoscopists, enhance diagnostic efficiency, and reduce the rate of missed diagnosis and misdiagnosis.
Collapse
Affiliation(s)
- Zhongyu He
- Biosensor National Special Laboratory, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Peng Wang
- Biosensor National Special Laboratory, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xuesong Ye
- Biosensor National Special Laboratory, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China.
- State Key Laboratory of CAD and CG, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
31
|
Aquino LEDN, Barbosa GA, Ramos JDL, O K Giese S, Santana FS, Hughes DL, Nunes GG, Fu L, Fang M, Poneti G, Carneiro Neto AN, Moura RT, Ferreira RAS, Carlos LD, Macedo AG, Soares JF. Seven-Coordinate Tb 3+ Complexes with 90% Quantum Yields: High-Performance Examples of Combined Singlet- and Triplet-to-Tb 3+ Energy-Transfer Pathways. Inorg Chem 2021; 60:892-907. [PMID: 33393287 DOI: 10.1021/acs.inorgchem.0c03020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Seven-coordinate, pentagonal-bipyramidal (PBP) complexes [Ln(bbpen)Cl] and [Ln(bbppn)Cl], in which Ln = Tb3+ (products I and II), Eu3+ (III and IV), and Gd3+ (V and VI), with bbpen2- = N,N'-bis(2-oxidobenzyl)-N,N'-bis(pyridin-2-ylmethyl)ethylenediamine and bbppn2- = N,N'-bis(2-oxidobenzyl)-N,N'-bis(pyridin-2-ylmethyl)-1,2-propanediamine, were synthesized and characterized by single-crystal X-ray diffraction analysis, alternating-current magnetic susceptibility measurements, and photoluminescence (steady-state and time-resolved) spectroscopy. Under a static magnetic field of 0.1 T, the Tb3+ complexes I and II revealed single-ion-magnet behavior. Also, upon excitation at 320 nm at 300 K, I and II presented very high absolute emission quantum yields (0.90 ± 0.09 and 0.92 ± 0.09, respectively), while the corresponding Eu3+ complexes III and IV showed no photoluminescence. Detailed theoretical calculations on the intramolecular energy-transfer rates for the Tb3+ products indicated that both singlet and triplet ligand excited states contribute efficiently to the overall emission performance. The expressive quantum yields, QLnL, measured for I and II in the solid state and a dichloromethane solution depend on the excitation wavelength, being higher at 320 nm. Such a dependence was rationalized by computing the intersystem crossing rates (WISC) and singlet fluorescence lifetimes (τS) related to the population dynamics of the S1 and T1 levels. Thin films of product II showed high air stability and photostability upon continuous UV illumination, which allowed their use as downshifting layers in a green light-emitting device (LED). The prototypes presented a luminous efficacy comparable with those found in commercial LED coatings, without requiring encapsulation or dispersion of II in host matrixes. The results indicate that the PBP environment determined by the ethylenediamine (en)-based ligands investigated in this work favors the outstanding optical properties in Tb3+ complexes. This work presents a comprehensive structural, chemical, and spectroscopic characterization of two Tb3+ complexes of mixed-donor, en-based ligands, focusing on their outstanding optical properties. They constitute good molecular examples in which both triplet and singlet excited states provide energy to the Tb3+ ion and lead to high values of QLnL.
Collapse
Affiliation(s)
| | - Guilherme A Barbosa
- Department of Chemistry, Federal University of Paraná, 81530-900 - Curitiba-PR, Brazil
| | - Jaqueline de L Ramos
- Department of Chemistry, Federal University of Paraná, 81530-900 - Curitiba-PR, Brazil
| | - Siddhartha O K Giese
- Department of Chemistry, Federal University of Paraná, 81530-900 - Curitiba-PR, Brazil
| | - Francielli S Santana
- Department of Chemistry, Federal University of Paraná, 81530-900 - Curitiba-PR, Brazil
| | - David L Hughes
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Giovana G Nunes
- Department of Chemistry, Federal University of Paraná, 81530-900 - Curitiba-PR, Brazil
| | - Lianshe Fu
- Phantom-g, CICECO - Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 - Aveiro, Portugal
| | - Ming Fang
- Phantom-g, CICECO - Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 - Aveiro, Portugal
| | - Giordano Poneti
- Institute of Chemistry, Federal University of Rio de Janeiro, 21941-909 - Rio de Janeiro-RJ, Brazil
| | - Albano N Carneiro Neto
- Phantom-g, CICECO - Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 - Aveiro, Portugal
| | - Renaldo T Moura
- Department of Chemistry and Physics, Federal University of Paraíba, 58397-000 - Areia-PB, Brazil
| | - Rute A S Ferreira
- Phantom-g, CICECO - Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 - Aveiro, Portugal
| | - Luís D Carlos
- Phantom-g, CICECO - Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 - Aveiro, Portugal
| | - Andreia G Macedo
- Phantom-g, CICECO - Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 - Aveiro, Portugal.,Department of Physics, Federal University of Technology, 80230-901 - Curitiba, PR, Brazil
| | - Jaísa F Soares
- Department of Chemistry, Federal University of Paraná, 81530-900 - Curitiba-PR, Brazil
| |
Collapse
|
32
|
Luminescent probes for luminescence lifetime sensing and imaging in live cells: a narrative review. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
33
|
Fritzen DL, Giordano L, Rodrigues LCV, Monteiro JHSK. Opportunities for Persistent Luminescent Nanoparticles in Luminescence Imaging of Biological Systems and Photodynamic Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2015. [PMID: 33066063 PMCID: PMC7600618 DOI: 10.3390/nano10102015] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
The use of luminescence in biological systems allows us to diagnose diseases and understand cellular processes. Persistent luminescent materials have emerged as an attractive system for application in luminescence imaging of biological systems; the afterglow emission grants background-free luminescence imaging, there is no need for continuous excitation to avoid tissue and cell damage due to the continuous light exposure, and they also circumvent the depth penetration issue caused by excitation in the UV-Vis. This review aims to provide a background in luminescence imaging of biological systems, persistent luminescence, and synthetic methods for obtaining persistent luminescent materials, and discuss selected examples of recent literature on the applications of persistent luminescent materials in luminescence imaging of biological systems and photodynamic therapy. Finally, the challenges and future directions, pointing to the development of compounds capable of executing multiple functions and light in regions where tissues and cells have low absorption, will be discussed.
Collapse
Affiliation(s)
- Douglas L. Fritzen
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP 05508-000, Brazil; (D.L.F.); (L.G.)
| | - Luidgi Giordano
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP 05508-000, Brazil; (D.L.F.); (L.G.)
| | - Lucas C. V. Rodrigues
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP 05508-000, Brazil; (D.L.F.); (L.G.)
| | | |
Collapse
|
34
|
Niu H, Zhang Y, Tang J, Zhu X, Ye Y, Zhao Y. A bifunctional fluorescent sensor for CCCP-induced cancer cell apoptosis imaging. Chem Commun (Camb) 2020; 56:12423-12426. [PMID: 32936131 DOI: 10.1039/d0cc04200e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The detailed mechanism and the extent of pH/SO2 changes during apoptosis remain unknown. The developed sensor NPCF for SO2 and pH dual detection illustrates that SO2 can reduce the inflammation caused by LPS and the acidification of the environment. The levels of SO2 and pH change during carbonyl cyanide m-chlorophenylhydrazone (CCCP)-induced apoptosis.
Collapse
Affiliation(s)
- Huawei Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | | | | | | | | | | |
Collapse
|
35
|
Jin GQ, Xue HZ, Zhang JL. Porpholactone Chemistry: Shining New Light on an Old Cofactor. Chempluschem 2020; 86:71-81. [PMID: 32844583 DOI: 10.1002/cplu.202000494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/30/2020] [Indexed: 02/06/2023]
Abstract
The emergence of porpholactone chemistry, discovered over 30 years ago, has significantly stimulated the development of biomimetic tetrapyrrole chemistry. It offers an opportunity, through modifications of non-pyrrolic building blocks, to clarify the relationship between chemical structure and excited-state properties, deciphering the structural code for the biological functions of life pigments. With intriguing photophysical properties in the red to near-infrared (NIR) regions, facile modulation of their electronic nature by fine-tuning chemical structures, and coordination ability with diverse metal ions, these novel porphyrinoids have favorable prospects in the fields of optical materials, bioimaging and therapy, and catalysis. In this Minireview, we summarize the brief history of porpholactone chemistry, and focus on the studies carried out in our group, particularly on the regioisomeric effect, NIR lanthanide luminescence, and metal catalysis. We outline the perspectives of these compounds in the construction of porpholactone-related biomedical applications and optical and energy materials, in order to inspire more interest and further advance bioinspired inorganic chemistry and lanthanide chemical biology.
Collapse
Affiliation(s)
- Guo-Qing Jin
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Hao-Zong Xue
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| |
Collapse
|
36
|
Chakraborty S, Joseph MM, Varughese S, Ghosh S, Maiti KK, Samanta A, Ajayaghosh A. A new pentacyclic pyrylium fluorescent probe that responds to pH imbalance during apoptosis. Chem Sci 2020; 11:12695-12700. [PMID: 34094464 PMCID: PMC8162809 DOI: 10.1039/d0sc02623a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Efficient fluorophores with easy synthetic routes and fast responses are of great importance in clinical diagnostics. Herein, we report a new, rigid pentacyclic pyrylium fluorophore, PS-OMe, synthesised in a single step by a modified Vilsmeier-Haack reaction. Insights into the reaction mechanism facilitated a new reaction protocol for the efficient synthesis of PS-OMe which upon demethylation resulted in a "turn-on" pH sensor, PS-OH. This new fluorescent probe has been successfully used to monitor intracellular acidification at physiological pH. From the fluorescence image analysis, we were able to quantify the intracellular dynamic pH change during apoptosis. This new pH probe is a potential chemical tool for screening, drug discovery and dose determination in cancer therapy.
Collapse
Affiliation(s)
- Sandip Chakraborty
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR - Human Resource Development Centre Ghaziabad 201002 India
| | - Manu M Joseph
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
| | - Sunil Varughese
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR - Human Resource Development Centre Ghaziabad 201002 India
| | - Samrat Ghosh
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
| | - Kaustabh K Maiti
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR - Human Resource Development Centre Ghaziabad 201002 India
| | - Animesh Samanta
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
- Department of Chemistry, Shiv Nadar University NH91, Dadri, Gautam Buddh Nagar 201314 India
| | - Ayyappanpillai Ajayaghosh
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR - Human Resource Development Centre Ghaziabad 201002 India
| |
Collapse
|
37
|
Peng XX, Zhu XF, Zhang JL. Near Infrared (NIR) imaging: Exploring biologically relevant chemical space for lanthanide complexes. J Inorg Biochem 2020; 209:111118. [PMID: 32502875 DOI: 10.1016/j.jinorgbio.2020.111118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 02/08/2023]
Abstract
Near Infrared (NIR) imaging agents are extensively used in the biological or preclinical treatment and diagnosis of a wide range of diseases including cancers and tumors. The current arsenal of NIR compounds are most constituted by organic dyes, polymers, inorganic nanomaterials, whereas Ln molecular complexes explore an alternative approach to design NIR probes that are potentially bring new molecular toolkits into the biomedicine. In this review, NIR imaging agents are categorized according to their molecular sizes, constitution and the key properties and features of each class of compounds are briefly defined wherever possible. To better elucidate the features of Ln complexes, we provide a succinct understanding of sensitization process and molecular Ln luminescence at a mechanistic level, which may help to deliver new insights to design NIR imaging probes. Finally, we used our work on NIR ytterbium (Yb3+) probes as an example to raise awareness of exploring biologically relevant chemical space for lanthanide complexes as chemical entities for biological activity.
Collapse
Affiliation(s)
- Xin-Xin Peng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Xiao-Fei Zhu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, PR China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
38
|
Song A, Shen X, Feng T, Gai S, Wei H, Li X, Chen H. Optimized Fluorescent Probe for Specific Imaging of Glutathione S-Transferases in Living Cells and Mice. Chem Asian J 2020; 15:1464-1468. [PMID: 32227593 DOI: 10.1002/asia.202000152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/14/2020] [Indexed: 11/05/2022]
Abstract
GSTP1 has been considered to be a marker for malignancy in many tissues. However, the existing GST fluorescent probes are unfavorable for in vivo imaging because of the limited emission wavelength or insufficient fluorescence enhancement (six-fold). The limited fluorescence enhancement of GST fluorescent probes is mainly ascribed to the high background signals resulting from the spontaneous reaction between GSH and the probes. In this work, a highly specific GST probe with NIR emission has been successfully developed through optimization of the essential unit of the probe to repress the spontaneous reaction. The novel GST probe exhibits over 100-fold fluorescence enhancement upon incubation with GSTP1/GSH and high selectivity over other potential interference. In addition, the probe has been proved to be capable of tracking endogenous GST in A549 cells. Finally, the in vivo imaging results demonstrate that the probe can be used for effective imaging of endogenous GST activity in subcutaneous tumor mouse with high contrast.
Collapse
Affiliation(s)
- Aiguo Song
- Department of Medicinal Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, 710032, P. R. China.,Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xin Shen
- Department of Medicinal Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, 710032, P. R. China
| | - Tian Feng
- Department of Medicinal Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, 710032, P. R. China.,Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, 710032, P. R. China
| | - Shouchang Gai
- Department of Medicinal Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, 710032, P. R. China
| | - Haiqing Wei
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xinxin Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hui Chen
- Department of Medicinal Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, 710032, P. R. China
| |
Collapse
|
39
|
Shen W, Wang L, Zhu S, Yu S, Cai C, Yi W, Zhu Q. A dicyanoisophorone-based, near-infrared, lysosome-targeting pH sensor with an extremely large Stokes shift. Anal Biochem 2020; 596:113609. [DOI: 10.1016/j.ab.2020.113609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/25/2019] [Accepted: 01/29/2020] [Indexed: 02/08/2023]
|
40
|
Monteiro JHSK. Recent Advances in Luminescence Imaging of Biological Systems Using Lanthanide(III) Luminescent Complexes. Molecules 2020; 25:E2089. [PMID: 32365719 PMCID: PMC7248892 DOI: 10.3390/molecules25092089] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
The use of luminescence in biological systems allows one to diagnose diseases and understand cellular processes. Molecular systems, particularly lanthanide(III) complexes, have emerged as an attractive system for application in cellular luminescence imaging due to their long emission lifetimes, high brightness, possibility of controlling the spectroscopic properties at the molecular level, and tailoring of the ligand structure that adds sensing and therapeutic capabilities. This review aims to provide a background in luminescence imaging and lanthanide spectroscopy and discuss selected examples from the recent literature on lanthanide(III) luminescent complexes in cellular luminescence imaging, published in the period 2016-2020. Finally, the challenges and future directions that are pointing for the development of compounds that are capable of executing multiple functions and the use of light in regions where tissues and cells have low absorption will be discussed.
Collapse
|
41
|
Monteiro JHSK, Fetto NR, Tucker MJ, de Bettencourt-Dias A. Luminescent Carbazole-Based Eu III and Yb III Complexes with a High Two-Photon Absorption Cross-Section Enable Viscosity Sensing in the Visible and Near IR with One- and Two-Photon Excitation. Inorg Chem 2020; 59:3193-3199. [PMID: 32052955 DOI: 10.1021/acs.inorgchem.9b03561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The newly synthesized EuIII and YbIII complexes with the new carbazole-based ligands CPAD2- and CPAP4- display the characteristic long-lived metal-centered emission upon one- and two-photon excitation. The EuIII complexes show the expected narrow emission bands in the red region, with emission lifetimes between 0.382 and 1.464 ms and quantum yields between 2.7% and 35.8%, while the YbIII complexes show the expected emission in the NIR region, with emission lifetimes between 0.52 and 37.86 μs and quantum yields between 0.028% and 1.12%. Two-photon absorption cross sections (σ2PA) as high as 857 GM were measured for the two ligands. The complexes showed a strong dependence of the one- and two-photon sensitized emission intensity on solvent viscosity in the range of 0.5-200 cP in the visible and NIR region.
Collapse
Affiliation(s)
| | - Natalie R Fetto
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Matthew J Tucker
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | | |
Collapse
|
42
|
Jin GQ, Ning Y, Geng JX, Jiang ZF, Wang Y, Zhang JL. Joining the journey to near infrared (NIR) imaging: the emerging role of lanthanides in the designing of molecular probes. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01132c] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The recent developments and prospects of near-infrared molecular probes based on luminescent lanthanide coordination complexes in bioimaging are described, which is important to emphasise the importance of lanthanide chemical biology.
Collapse
Affiliation(s)
- Guo-Qing Jin
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Yingying Ning
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Jing-Xing Geng
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Zhi-Fan Jiang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Yan Wang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| |
Collapse
|
43
|
Balasooriya D, Liu B, He H, Sykes A, May PS. A conjugated porphyrin as a red-light sensitizer for near-infrared emission of ytterbium(iii) ion. NEW J CHEM 2020. [DOI: 10.1039/d0nj04910g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A conjugated porphyrin with broader absorption in the visible region was synthesized for sensitizing the near-infrared emission of ytterbium(iii) ions.
Collapse
Affiliation(s)
- Dinesh Balasooriya
- Department of Chemistry and Biochemistry
- Eastern Illinois University
- Charleston
- USA
| | - Beibei Liu
- Department of Chemistry and Biochemistry
- Eastern Illinois University
- Charleston
- USA
| | - Hongshan He
- Department of Chemistry and Biochemistry
- Eastern Illinois University
- Charleston
- USA
| | - Andew Sykes
- Department of Chemistry
- University of South Dakota
- Vermillion
- USA
| | - P. Stanley May
- Department of Chemistry
- University of South Dakota
- Vermillion
- USA
| |
Collapse
|
44
|
Yao Y, Hou CL, Yang ZS, Ran G, Kang L, Li C, Zhang W, Zhang J, Zhang JL. Unusual near infrared (NIR) fluorescent palladium(ii) macrocyclic complexes containing M-C bonds with bioimaging capability. Chem Sci 2019; 10:10170-10178. [PMID: 32055371 PMCID: PMC6979397 DOI: 10.1039/c9sc04044g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Near infrared (NIR) luminescent metal complexes are promising probes in bioimaging and biosensing, however they generally suffer from oxygen interference arising from heavy metal effects. We designed new tetradentate macrocyclic benzitripyrrin (C^N^N^N) ligands by combination of M-C bond formation and reducing the π-conjugation to achieve NIR fluorescent Pd complexes (700-1000 nm) with quantum yields up to 14%. To understand the origin of NIR fluorescence, detailed analyses by density functional theory/time-dependent density functional theory (DFT/TDDFT) calculations together with femtosecond and nanosecond transient absorption spectroscopies suggest that M-C bond formation indeed leads to destabilization of the d-d excited state and less effective quenching of emission; and importantly, small spin-orbital coupling (SOC) and the large singlet-triplet energy gap are the primary causes of the non-population of triplet states. Comparison of PdII and PtII analogues shows that the non-radiative channel of the out-plane vibration of the tripyrrin plane effectively quenches the fluorescence of the PtII complex but not the PdII congener. We also demonstrate the proof-of-concept applications of PdII complexes (Pd-1 and Pd-3) encapsulated in silica nanoparticles, in both in vitro and in vivo bioimaging experiments without oxygen interference. Moreover, pH-induced reversible switching of NIR fluorescence was achieved even intracellularly using the Pd complex (Pd-2), which shows the potential to further develop perspective stimuli-responsive NIR materials.
Collapse
Affiliation(s)
- Yuhang Yao
- Beijing National Laboratory for Molecular Sciences , State Key Laboratory of Rare Earth Materials Chemistry and Applications , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China .
| | - Chun-Liang Hou
- Center of Materials Science and Optoelectronics Engineering , College of Materials Science and Opto-Electronic Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China .
| | - Zi-Shu Yang
- Beijing National Laboratory for Molecular Sciences , State Key Laboratory of Rare Earth Materials Chemistry and Applications , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China .
| | - Guangliu Ran
- Center for Advanced Quantum Studies , Department of Physics and Applied Optics Beijing Area Major Laboratory , Beijing Normal University , Beijing 100875 , P. R. China .
| | - Lei Kang
- Department of Nuclear Medicine , Peking University First Hospital , Beijing 100034 , P. R. China
| | - Cuicui Li
- Department of Nuclear Medicine , Peking University First Hospital , Beijing 100034 , P. R. China
| | - Wenkai Zhang
- Center for Advanced Quantum Studies , Department of Physics and Applied Optics Beijing Area Major Laboratory , Beijing Normal University , Beijing 100875 , P. R. China .
| | - Jing Zhang
- Center of Materials Science and Optoelectronics Engineering , College of Materials Science and Opto-Electronic Technology , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China .
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences , State Key Laboratory of Rare Earth Materials Chemistry and Applications , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China .
| |
Collapse
|
45
|
|
46
|
Ning Y, Jin GQ, Zhang JL. Porpholactone Chemistry: An Emerging Approach to Bioinspired Photosensitizers with Tunable Near-Infrared Photophysical Properties. Acc Chem Res 2019; 52:2620-2633. [PMID: 31298833 DOI: 10.1021/acs.accounts.9b00119] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chlorophylls, known as the key building blocks of natural light-harvesting antennae, are essential to utilize solar energy from visible to near-infrared (NIR) region during the photosynthesis process. The fundamental studies for the relationship between structure and photophysical properties of chlorophylls disclosed the importance of β-peripheral modification and thus boosted the fast growth of NIR absorbing/emissive porphyrinoids via altering the extent of π-conjugation and the degree of distortion from the planarity of macrocycle. Despite the tremendous progress made in various porphyrin-based synthetic models, it still remains a challenge to precisely modulate photophysical properties through fine-tuning of β-peripheral structures in the way natural chlorophylls do. With this in mind, we initiated a program and focused on meso-C6F5-substituted porpholactone (F20TPPL), in which one β-pyrrolic double bond was replaced by a lactone moiety, as an attractive platform to construct the bioinspired library of NIR porphyrinoids. In this Account, we summarize our recent contributions to the bioinspired design, synthesis, photophysical characterization, and applications of porpholactones and their derivatives. We have developed a general, convenient method to directly prepare porpholactones in large scale up to gram, which forms the chemical basis of porpholactone chemistry. By modulation of the saturation level and in particular regioisomerization of β-dilactone moieties, a synthetic library constituted by a series of porpholactones and their derivatives has been established. Thanks to the electron-withdrawing nature of lactone moiety, derivation of the saturation levels gives help to build stable models for chlorin, bacteriochlorin, and tunichlorin. It is worth noting that regioisomerization of dilactone moieties mimics the relative orientation of β-substituents in natural chlorophylls and hemes, which was considered as the key factor to tune NIR absorption and reactivity. Porpholactones can illustrate the capability of fine-tuning photophysical properties including the excited triplet states by subtle alteration of β-peripheral structures in the presence of transition metals and lanthanides (Ln). Furthermore, they can serve as efficient photosensitizers for singlet oxygen and NIR Ln, showing potential applications in cell imaging and photocytotoxicity studies. The high luminescence, tunable structures, high cellular uptake, and intense NIR absorption render them as promising and competitive candidates for theranostics in vitro and in vivo. Therefore, extending the studies of "porpholactone chemistry" not only tests the fundamental understanding of the structure-function relationship that governs NIR photophysical properties of natural tetrapyrrole cofactors such as chlorophylls but also provides the guiding principles for the bioinspired design of NIR luminescent molecular probes with various applications. Taken together, as a new synthetic porphyrin derivative, porpholactone chemistry shines light on synthetic porphyrin, bioinorganic, and lanthanide chemistry.
Collapse
Affiliation(s)
- Yingying Ning
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Guo-Qing Jin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
47
|
Ning Y, Chen S, Chen H, Wang JX, He S, Liu YW, Cheng Z, Zhang JL. A proof-of-concept application of water-soluble ytterbium(iii) molecular probes in in vivo NIR-II whole body bioimaging. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00157c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lanthanide complexes are firstly applied for in vivo NIR-II high resolution whole body bioimaging.
Collapse
Affiliation(s)
- Yingying Ning
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Si Chen
- Molecular Imaging Program at Stanford (MIPS)
- Bio-X Program
- and Department of Radiology
- Canary Center at Stanford for Cancer Early Detection
- Stanford University
| | - Hao Chen
- Molecular Imaging Program at Stanford (MIPS)
- Bio-X Program
- and Department of Radiology
- Canary Center at Stanford for Cancer Early Detection
- Stanford University
| | - Jing-Xiang Wang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Shuqing He
- Molecular Imaging Program at Stanford (MIPS)
- Bio-X Program
- and Department of Radiology
- Canary Center at Stanford for Cancer Early Detection
- Stanford University
| | - Yi-Wei Liu
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS)
- Bio-X Program
- and Department of Radiology
- Canary Center at Stanford for Cancer Early Detection
- Stanford University
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| |
Collapse
|