1
|
Tsuda M, Morita T, Morita Y, Takaya J, Nakamura H. Methylene Insertion into Nitrogen-Heteroatom Single Bonds of 1,2-Azoles via a Zinc Carbenoid: An Alternative Tool for Skeletal Editing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307563. [PMID: 38148471 PMCID: PMC10933618 DOI: 10.1002/advs.202307563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/10/2023] [Indexed: 12/28/2023]
Abstract
The nitrogen-heteroatom single bonds of 1,2-azoles and isoxazolines underwent methylene insertion in the presence of CH2 I2 (6 equiv.) and diethylzinc (3 equiv.) to produce a wide variety of the ring-expanded six-membered heterocycles. Density functional theory calculations suggest that the methylene insertion proceeds via cleavage of nitrogen-heteroatom single bonds followed by ring closure.
Collapse
Affiliation(s)
- Masato Tsuda
- School of Life Science and TechnologyTokyo Institute of Technology4259 Nagatsuta‐cho Midori‐kuYokohama226–8501Japan
| | - Taiki Morita
- School of Life Science and TechnologyTokyo Institute of Technology4259 Nagatsuta‐cho Midori‐kuYokohama226–8501Japan
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology4259 Nagatsuta‐cho Midori‐kuYokohama226–8501Japan
| | - Yuto Morita
- Department of ChemistrySchool of ScienceTokyo Institute of TechnologyO‐okayamaMeguro‐kuTokyo152–8551Japan
| | - Jun Takaya
- Department of ChemistrySchool of ScienceTokyo Institute of TechnologyO‐okayamaMeguro‐kuTokyo152–8551Japan
| | - Hiroyuki Nakamura
- School of Life Science and TechnologyTokyo Institute of Technology4259 Nagatsuta‐cho Midori‐kuYokohama226–8501Japan
- Laboratory for Chemistry and Life ScienceInstitute of Innovative ResearchTokyo Institute of Technology4259 Nagatsuta‐cho Midori‐kuYokohama226–8501Japan
| |
Collapse
|
2
|
Dong J, Zhang T, Chen Y, Sheng C, Wang Y, Zhang X. A Tandem Regiospecific [3 + 2] Annulation/Ring Cleavage Reaction for the Synthesis of β-Ketoenamides. J Org Chem 2024; 89:2800-2806. [PMID: 38294361 DOI: 10.1021/acs.joc.3c02717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
A series of β-ketoenamines was synthesized from various phenacyl sulfoxides bearing 1-methyl-1H-tetrazole and oximes in moderate to excellent yields. The proposed mechanism involved the generation of α-sulfines from sulfoxides through thermolytic elimination, regiospecific formal [3 + 2] annulations, and elimination of SO2. This protocol provides convenient access to a variety of synthetically valuable N-unprotected β-enaminones with absolute Z selectivity.
Collapse
Affiliation(s)
- Jun Dong
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| | - Tuojiang Zhang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| | - Youwei Chen
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| | - Chengcai Sheng
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| | - Yanqing Wang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| | - Xuehua Zhang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng City 224007, People's Republic of China
| |
Collapse
|
3
|
Zhang JQ, Qiu PW, Liang C, Mo DL. Synthesis of Azetidine Nitrones and Exomethylene Oxazolines through a Copper(I)-Catalyzed 2,3-Rearrangement and 4π-Electrocyclization Cascade Strategy. Org Lett 2022; 24:7801-7805. [PMID: 36263993 DOI: 10.1021/acs.orglett.2c03156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A variety of azetidine nitrones are prepared in moderate to good yields through copper(I) combined with 2-aminopyridine to catalyze skeletal rearrangement of O-propargylic oximes. Mechanistic studies reveal that the reaction undergoes a copper(I)-catalyzed tandem [2,3]-rearrangement, 4π-electrocyclization, ring opening, and recyclization over four steps in one pot. Substituents at the terminus of alkyne and oxime moieties have a significant impact on the formation of azetidine nitrones and exomethylene oxazolines, respectively. Furthermore, the obtained azetidine nitrone could easily participate in [3 + 2] cycloaddition with alkynoates, and a [2.2]-paracyclophane-derived azetidine nitrone is synthesized in 45% yield over five steps from bromo[2.2]-paracyclophane.
Collapse
Affiliation(s)
- Jin-Qi Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Pei-Wen Qiu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Cui Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| |
Collapse
|
4
|
Yan H, Xu G, Gu M, Zhang S, Wu Q, Meng J, Zhu N, Fang Z, Duan J, Guo K. Copper-catalyzed [4+2] oxidative annulation of α,β-unsaturated ketoxime acetates with ethyl trifluoropyruvate. Chem Commun (Camb) 2022; 58:6757-6760. [PMID: 35611963 DOI: 10.1039/d2cc01573k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel route for tandem C-N/C-O formation via copper-catalyzed [4+2] oxidative annulation of α,β-unsaturated ketoxime acetates with ethyl trifluoropyruvate to synthesize valuable trifluoromethyl-containing 2H-1,3-oxazines in moderate to good yields is developed. This procedure represents the first [4+2] oxidative annulation of oxime derivatives with activated CO bonds and provides an alternative route towards functionalized 2H-1,3-oxazines.
Collapse
Affiliation(s)
- Huan Yan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Gaochen Xu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Meng Gu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Sai Zhang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Qinghuan Wu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Jingjing Meng
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Jindian Duan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| |
Collapse
|
5
|
Copper Catalyzed Inverse Electron Demand [4+2] Cycloaddition for the Synthesis of Oxazines. Catalysts 2022. [DOI: 10.3390/catal12050526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A copper catalyzed tandem CuAAC/ring cleavage/[4+2] annulation reaction of terminal ynones, sulfonyl azides, and imines has been developed to synthesize the functionalized oxazines under mild conditions. Particularly, the intermediate N-sulfonyl acylketenimines undergo cycloaddition of an inverse electron demand Diels–Alder reaction with imines and a series of 1,3-oxazine derivatives were obtained successfully in good yields.
Collapse
|
6
|
Nakamura I, Terada M. Gold-Catalyzed Skeletal Rearrangement Reactions of O-Propargylic and O-Homopropargylic Oximes. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Tashiro H, Terada M, Nakamura I. Consecutive O-S/N-S Bond Cleavage in Gold-Catalyzed Rearrangement Reactions of Alkynyl N-Sulfinylimines. Angew Chem Int Ed Engl 2021; 60:12248-12252. [PMID: 33590966 DOI: 10.1002/anie.202100207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Indexed: 12/16/2022]
Abstract
Gold-catalyzed reactions of alkynyl N-sulfinylimines were used to produce the corresponding 2H-azirines possessing sulfenyl and acyl groups at the 3-position of the azirine ring in good to excellent yields. These reactions involved internal transfer of the sulfinyl oxygen atom to form a thiooxime intermediate tethered to an α-oxo gold carbene moiety. Subsequent insertion of the carbene into the N-S bond resulted in ring construction.
Collapse
Affiliation(s)
- Hiroki Tashiro
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Itaru Nakamura
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
8
|
Nikbakht A, Amiri K, Khosravi H, Zhou Y, Balalaie S, Breit B. Copper-Catalyzed Cycloisomerization of Unactivated Allene-Tethered O-Propargyl Oximes: A Domino Reaction Sequence toward the Synthesis of Hexahydropyrrolo[3,4- b]azepin-5(4 H)-ones. Org Lett 2021; 23:3343-3348. [PMID: 33843238 DOI: 10.1021/acs.orglett.1c00837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel copper-catalyzed cycloisomerization of unactivated allene-tethered O-propargyl oximes has been developed for the synthesis of hexahydropyrrolo[3,4-b]azepin-5(4H)-ones. This one-pot domino reaction proceeds via a [2,3]-sigmatropic rearrangement, a [3 + 2] cycloaddition, and another [3,3]-sigmatropic rearrangement. The methodology offers a practical and straightforward route for the rapid assembly of both ring components of the fused bicyclic motifs from acyclic precursors by simultaneously forming four new bonds (a C═O, a C═N, and two C-C bonds) in a single step.
Collapse
Affiliation(s)
- Ali Nikbakht
- Institut fur Organische Chemie, Albert-Ludwigs-Universitat Freiburg Albertstrasse 21, 79104 Freiburg im Breisgau, Germany.,Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran 15875-4416, Iran
| | - Kamran Amiri
- Institut fur Organische Chemie, Albert-Ludwigs-Universitat Freiburg Albertstrasse 21, 79104 Freiburg im Breisgau, Germany.,Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran 15875-4416, Iran
| | - Hormoz Khosravi
- Institut fur Organische Chemie, Albert-Ludwigs-Universitat Freiburg Albertstrasse 21, 79104 Freiburg im Breisgau, Germany.,Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran 15875-4416, Iran
| | - Yirong Zhou
- Institut fur Organische Chemie, Albert-Ludwigs-Universitat Freiburg Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran 15875-4416, Iran.,Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Bernhard Breit
- Institut fur Organische Chemie, Albert-Ludwigs-Universitat Freiburg Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
9
|
Tashiro H, Terada M, Nakamura I. Consecutive O−S/N−S Bond Cleavage in Gold‐Catalyzed Rearrangement Reactions of Alkynyl
N
‐Sulfinylimines. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hiroki Tashiro
- Department of Chemistry Graduate School of Science Tohoku University 6-3 Aramaki Aza Aoba, Aoba-ku Sendai 980-8578 Japan
| | - Masahiro Terada
- Department of Chemistry Graduate School of Science Tohoku University 6-3 Aramaki Aza Aoba, Aoba-ku Sendai 980-8578 Japan
| | - Itaru Nakamura
- Research and Analytical Center for Giant Molecules Graduate School of Science Tohoku University 6-3 Aramaki Aza Aoba, Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
10
|
Nakamura I, Hirayama A, Gima S, Terada M. Exo-Cyclization: Intermolecular Methylene Transfer Sequence in Au-Catalyzed Reactions of O-Homopropargylic Oximes. Chemistry 2020; 26:15816-15820. [PMID: 32618375 DOI: 10.1002/chem.202002764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 02/02/2023]
Abstract
The Au-catalyzed reactions of O-homopropaylic oximes afforded the 3-alkenylated isoxazolines in good to high yields. The mechanistic studies suggest that the reaction proceeds through an exo-cyclization followed by intermolecular methylene group transfer. In addition, oligomeric species of the starting material were observed in the reaction mixture by mass spectra, supporting our proposed mechanism, which proceeds through a repeated intermolecular C-C bond forming process.
Collapse
Affiliation(s)
- Itaru Nakamura
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai, 9808578, Japan
| | - Arinobu Hirayama
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai, 9808578, Japan
| | - Shinya Gima
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai, 9808578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai, 9808578, Japan
| |
Collapse
|
11
|
Nakamura I, Terada M. π-Lewis Acidic Metal-Catalyzed Skeletal Rearrangement Reactions of <i>O</i>-Propargylic Oximes. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Itaru Nakamura
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University
| | | |
Collapse
|