1
|
Shimizu T, Wang H, Wakamatsu K, Ohkata S, Tanifuji N, Yoshikawa H. Electrochemically driven physical properties of solid-state materials: action mechanisms and control schemes. Dalton Trans 2024; 53:16772-16796. [PMID: 39041779 DOI: 10.1039/d4dt01532k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The various physical properties recently induced by solid-state electrochemical reactions must be comprehensively understood, and their mechanisms of action should be elucidated. Reversible changes in conductivity, magnetism, and colour have been achieved by combining the redox reactions of d metal ions and organic materials, as well as the molecular and crystal structures of solids. This review describes the electrochemically driven physical properties of conductors, magnetic materials, and electrochromic materials using various electrochemical devices.
Collapse
Affiliation(s)
- Takeshi Shimizu
- Chemistry and Biochemistry Division, Department of Integrated Engineering, National Institute of Technology, Yonago College, 4448 Hikona-cho, Yonago, Tottori 683-8502, Japan.
| | - Heng Wang
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Katsuhiro Wakamatsu
- Department of Materials Science, School of Engineering Kwansei Gakuin University, Gakuen 2-1, Sanda 669-1337, Japan.
| | - Shunsuke Ohkata
- Department of Materials Science, School of Engineering Kwansei Gakuin University, Gakuen 2-1, Sanda 669-1337, Japan.
| | - Naoki Tanifuji
- Chemistry and Biochemistry Division, Department of Integrated Engineering, National Institute of Technology, Yonago College, 4448 Hikona-cho, Yonago, Tottori 683-8502, Japan.
| | - Hirofumi Yoshikawa
- Department of Materials Science, School of Engineering Kwansei Gakuin University, Gakuen 2-1, Sanda 669-1337, Japan.
| |
Collapse
|
2
|
Li J, Ott S. The Molecular Nature of Redox-Conductive Metal-Organic Frameworks. Acc Chem Res 2024; 57:2836-2846. [PMID: 39288193 PMCID: PMC11447836 DOI: 10.1021/acs.accounts.4c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
ConspectusRedox-conductive metal-organic frameworks (RC-MOFs) are a class of porous materials that exhibit electrical conductivity through a chain of self-exchange reactions between molecularly defined, neighboring redox-active units of differing oxidation states. To maintain electroneutrality, this electron hopping transport is coupled to the translocation of charge balancing counterions. Owing to the molecular nature of the redox active components, RC-MOFs have received increasing attention for potential applications in energy storage, electrocatalysis, reconfigurable electronics, etc. While our understanding of fundamental aspects that govern electron hopping transport in RC-MOFs has improved during the past decade, certain fundamental aspects such as questions that arise from the coupling between electron hopping and diffusion migration of charge balancing counterions are still not fully understood.In this Account, we summarize and discuss our group's efforts to answer some of these fundamental questions while also demonstrating the applicability of RC-MOFs in energy-related applications. First, we introduce general design strategies for RC-MOFs, fundamentals that govern their charge transport properties, and experimental diagnostics that allow for their identification. Selected examples with redox-active organic linkers or metallo-linkers are discussed to demonstrate how the molecular characteristics of the redox-active units inside RC-MOFs are retained. Second, we summarize experimental techniques that can be used to characterize charge transport properties in a RC-MOF. The apparent electron diffusion coefficient, Deapp, that is frequently determined in the field and obtained in large perturbation, transient experiments will be discussed and related to redox conductivity, σ, that is obtained in a steady state setup. It will be shown that both MOF-intrinsic (topology, pore size, and apertures) and experimental (nature of electrolyte, solvent) factors can have noticeable impact on electrical conductivity through RC-MOFs. Lastly, we summarize our progress in utilizing RC-MOFs as electrochromic materials, materials for harvesting minority carriers from illuminated semiconductors and within electrocatalysis. In the latter case, recent work on multivariate RC-MOFs in which redox active linkers are used to "wire" redox catalysts in the crystal interiors will be presented, offering opportunities to independently optimize charge transport and catalytic function.The ambition of this Account is to inspire the design of new RC-MOF systems, to aid their identification, to provide mechanistic insights into the governing ion-coupled electron hopping transport mode of conductivity, and ultimately to promote their applications in existing and emerging areas. With basically unlimited possibilities of molecular engineering tools, together with research in both fundamental and applied fields, we believe that RC-MOFs will attract even more attention in the future to unlock their full potential.
Collapse
Affiliation(s)
- Jingguo Li
- Wallenberg Initiative Materials
Science for Sustainability, Department of Chemistry, Ångström
Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Sascha Ott
- Wallenberg Initiative Materials
Science for Sustainability, Department of Chemistry, Ångström
Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
3
|
Lou D, Yutronkie NJ, Oyarzabal I, Wang LF, Adak A, Nadurata VL, Diego R, Suturina EA, Mailman A, Dechambenoit P, Rouzières M, Wilhelm F, Rogalev A, Bonhommeau S, Mathonière C, Clérac R. Self-Assembled Tetranuclear Square Complex of Chromium(III) Bridged by Radical Pyrazine: A Molecular Model for Metal-Organic Magnets. J Am Chem Soc 2024; 146:19649-19653. [PMID: 38976364 DOI: 10.1021/jacs.4c05756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The attractive electronic properties of metal-pyrazine materials─electrical conductivity, magnetic order, and strong magnetic coupling─can be tuned in a wide range depending on the metal employed, as well as its ligand-imposed redox environment. Using solvent-directed synthesis to control the dimensionality of such systems, a discrete tetranuclear chromium(III) complex, exhibiting a rare example of bridging radical pyrazine, has been prepared from chromium(II) triflate and neutral pyrazine. The strong antiferromagnetic interaction between CrIII (S = 3/2) and radical pyrazine (S = 1/2) spins, theoretically estimated at about -932 K, leads to a thermally isolated ST = 4 ground state, which remains the only populated state observable even at room temperature.
Collapse
Affiliation(s)
- Dandan Lou
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
| | | | - Itziar Oyarzabal
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, ES-48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, ES-48009 Bilbao, Spain
| | - Long-Fei Wang
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
| | - Abhijit Adak
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
| | | | - Rosa Diego
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
| | | | - Aaron Mailman
- Department of Chemistry, NanoScience Centre, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | | | | | - Fabrice Wilhelm
- ESRF - The European Synchrotron, CS 40220, F-38043 Grenoble Cedex 9, France
| | - Andrei Rogalev
- ESRF - The European Synchrotron, CS 40220, F-38043 Grenoble Cedex 9, France
| | | | | | - Rodolphe Clérac
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
| |
Collapse
|
4
|
Zhang S, Yang X, Wooten BL, Bag R, Yadav L, Moore CE, Parida S, Trivedi N, Lu Y, Heremans JP, Haravifard S, Wu Y. Two-Dimensional Cobalt(II) Benzoquinone Frameworks for Putative Kitaev Quantum Spin Liquid Candidates. J Am Chem Soc 2024; 146:15061-15069. [PMID: 38787332 DOI: 10.1021/jacs.3c14537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The realization and discovery of quantum spin liquid (QSL) candidate materials are crucial for exploring exotic quantum phenomena and applications associated with QSLs. Most existing metal-organic two-dimensional (2D) quantum spin liquid candidates have structures with spins arranged on the triangular or kagome lattices, whereas honeycomb-structured metal-organic compounds with QSL characteristics are rare. Here, we report the use of 2,5-dihydroxy-1,4-benzoquinone (X2dhbq, X = Cl, Br, H) as the linkers to construct cobalt(II) honeycomb lattices (NEt4)2[Co2(X2dhbq)3] as promising Kitaev-type QSL candidate materials. The high-spin d7 Co2+ has pseudospin-1/2 ground-state doublets, and benzoquinone-based linkers not only provide two separate superexchange pathways that create bond-dependent frustrated interactions but also allow for chemical tunability to mediate magnetic coupling. Our magnetization data show antiferromagnetic interactions between neighboring metal centers with Weiss constants from -5.1 to -8.5 K depending on the X functional group in X2dhbq linkers (X = Cl, Br, H). No magnetic transition or spin freezing could be observed down to 2 K. Low-temperature susceptibility (down to 0.3 K) and specific heat (down to 0.055 K) of (NEt4)2[Co2(H2dhbq)3] were further analyzed. Heat capacity measurements confirmed no long-range order down to 0.055 K, evidenced by the broad peak instead of the λ-like anomaly. Our results indicate that these 2D cobalt benzoquinone frameworks are promising Kitaev QSL candidates with chemical tunability through ligands that can vary the magnetic coupling and frustration.
Collapse
Affiliation(s)
- Songwei Zhang
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xu Yang
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Brandi L Wooten
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Rabindranath Bag
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Lalit Yadav
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Curtis E Moore
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Smrutimedha Parida
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nandini Trivedi
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuanming Lu
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Joseph P Heremans
- Department of Mechanical & Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sara Haravifard
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Yiying Wu
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Saha R, Gupta K, Gómez García CJ. Strategies to Improve Electrical Conductivity in Metal-Organic Frameworks: A Comparative Study. CRYSTAL GROWTH & DESIGN 2024; 24:2235-2265. [PMID: 38463618 PMCID: PMC10921413 DOI: 10.1021/acs.cgd.3c01162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Metal-organic frameworks (MOFs), formed by the combination of both inorganic and organic components, have attracted special attention for their tunable porous structures, chemical and functional diversities, and enormous applications in gas storage, catalysis, sensing, etc. Recently, electronic applications of MOFs like electrocatalysis, supercapacitors, batteries, electrochemical sensing, etc., have become a major research topic in MOF chemistry. However, the low electrical conductivity of most MOFs represents a major handicap in the development of these emerging applications. To overcome these limitations, different strategies have been developed to enhance electrical conductivity of MOFs for their implementation in electronic devices. In this review, we outline all these strategies employed to increase the electronic conduction in both intrinsically (framework-modulated) and extrinsically (guests-modulated) conducting MOFs.
Collapse
Affiliation(s)
- Rajat Saha
- Departamento
de Química Inorgánica, Universidad
de Valencia, C/Dr. Moliner
50, 46100 Burjasot, Valencia, Spain
| | - Kajal Gupta
- Department
of Chemistry, Nistarini College, Purulia, 723101, WB India
| | - Carlos J. Gómez García
- Departamento
de Química Inorgánica, Universidad
de Valencia, C/Dr. Moliner
50, 46100 Burjasot, Valencia, Spain
| |
Collapse
|
6
|
Lien CY, Boyn JN, Anferov SW, Mazziotti DA, Anderson JS. Origin of Weak Magnetic Coupling in a Dimanganese(II) Complex Bridged by the Tetrathiafulvalene-Tetrathiolate Radical. Inorg Chem 2023; 62:19488-19497. [PMID: 37967380 DOI: 10.1021/acs.inorgchem.3c02534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Magnetic exchange coupling (J) between different spin centers plays a crucial role in molecule-based magnetic materials. Direct exchange coupling between an organic radical and a metal is frequently stronger than superexchange through diamagnetic ligands, and the strategy of using organic radicals to engender desirable magnetic properties has been an area of active investigation. Despite significant advances and exciting bulk properties, the magnitude of J for radical linkers bridging paramagnetic centers is still difficult to rationally predict. It is thus important to elucidate the features of organic radicals that govern this parameter. Here, we measure J for the tetrathiafulvalene-tetrathiolate radical (TTFtt3-•) in a dinuclear Mn(II) complex. Magnetometry studies show that the antiferromagnetic coupling in this complex is much weaker than that in related Mn(II)-radical compounds, in contrast to what might be expected for the S-based chelating donor atoms of TTFtt. Experimental and computational analyses suggest that this small J coupling may be attributed to poor overlap between Mn- and TTFtt-based magnetic orbitals coupled with insignificant spin density on the coordinating S-atoms. These factors override any expected increase in J from the comparatively strong S-donors. This work elucidates the magnetic coupling properties of the TTFtt3-• radical for the first time and also demonstrates how multiple competing factors must be considered in rationally designing organic radical ligands for molecular-based magnetic compounds.
Collapse
Affiliation(s)
- Chen-Yu Lien
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Jan-Niklas Boyn
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Sophie W Anferov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - David A Mazziotti
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
7
|
De S, Mouchaham G, Liu F, Affram M, Abeykoon B, Guillou N, Jeanneau E, Grenèche JM, Khrouz L, Martineau-Corcos C, Boudjema L, Salles F, Salcedo-Abraira P, Valente G, Souto M, Fateeva A, Devic T. Expanding the horizons of porphyrin metal-organic frameworks via catecholate coordination: exploring structural diversity, material stability and redox properties. JOURNAL OF MATERIALS CHEMISTRY. A 2023; 11:25465-25483. [PMID: 38037625 PMCID: PMC10683559 DOI: 10.1039/d3ta04490d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023]
Abstract
Porphyrin based Metal-Organic Frameworks (MOFs) have generated high interest because of their unique combination of light absorption, electron transfer and guest adsorption/desorption properties. In this study, we expand the range of available MOF materials by focusing on the seldom studied porphyrin ligand H10TcatPP, functionalized with tetracatecholate coordinating groups. A systematic evaluation of its reactivity with M(iii) cations (Al, Fe, and In) led to the synthesis and isolation of three novel MOF phases. Through a comprehensive characterization approach involving single crystal and powder synchrotron X-ray diffraction (XRD) in combination with the local information gained from spectroscopic techniques, we elucidated the structural features of the solids, which are all based on different inorganic secondary building units (SBUs). All the synthesized MOFs demonstrate an accessible porosity, with one of them presenting mesopores and the highest reported surface area to date for a porphyrin catecholate MOF (>2000 m2 g-1). Eventually, the redox activity of these solids was investigated in a half-cell vs. Li with the aim of evaluating their potential as electrode positive materials for electrochemical energy storage. One of the solids displayed reversibility during cycling at a rather high potential (∼3.4 V vs. Li+/Li), confirming the interest of redox active phenolate ligands for applications involving electron transfer. Our findings expand the library of porphyrin-based MOFs and highlight the potential of phenolate ligands for advancing the field of MOFs for energy storage materials.
Collapse
Affiliation(s)
- Siddhartha De
- Laboratoire des Multimatériaux et Interfaces, Université Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615 F-69622 Villeurbanne France
| | - Georges Mouchaham
- Institut Lavoisier de Versailles, UMR 8180 CNRS UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | - Fangbing Liu
- Laboratoire des Multimatériaux et Interfaces, Université Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615 F-69622 Villeurbanne France
| | - Maame Affram
- Institut Lavoisier de Versailles, UMR 8180 CNRS UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | - Brian Abeykoon
- Laboratoire des Multimatériaux et Interfaces, Université Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615 F-69622 Villeurbanne France
| | - Nathalie Guillou
- Institut Lavoisier de Versailles, UMR 8180 CNRS UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | - Erwann Jeanneau
- Laboratoire des Multimatériaux et Interfaces, Université Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615 F-69622 Villeurbanne France
| | - Jean-Marc Grenèche
- Institut des Molécules et Matériaux du Mans, IMMM UMR CNRS 6283, Le Mans Université Le Mans Cedex 9 F-72085 France
| | - Lhoussain Khrouz
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182 F-69342 Lyon France
| | - Charlotte Martineau-Corcos
- Institut Lavoisier de Versailles, UMR 8180 CNRS UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | | | | | - Pablo Salcedo-Abraira
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN F-44000 Nantes France
| | - Gonçalo Valente
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro Aveiro 3810-393 Portugal
| | - Manuel Souto
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro Aveiro 3810-393 Portugal
| | - Alexandra Fateeva
- Laboratoire des Multimatériaux et Interfaces, Université Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615 F-69622 Villeurbanne France
| | - Thomas Devic
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN F-44000 Nantes France
| |
Collapse
|
8
|
Yan X, Su X, Chen J, Jin C, Chen L. Two-Dimensional Metal-Organic Frameworks Towards Spintronics. Angew Chem Int Ed Engl 2023; 62:e202305408. [PMID: 37258996 DOI: 10.1002/anie.202305408] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023]
Abstract
The intrinsic properties of predesignable topologies and tunable electronic structures, coupled with the increase of electrical conductivity, make two-dimensional metal-organic frameworks (2D MOFs) highly prospective candidates for next-generation electronic/spintronic devices. In this Minireview, we present an outline of the design principles of 2D MOF-based spintronics materials. Then, we highlight the spin-transport properties of 2D MOF-based organic spin valves (OSVs) as a notable achievement in the progress of 2D MOFs for spintronics devices. After that, we discuss the potential for spin manipulation in 2D MOFs with bipolar magnetic semiconductor (BMS) properties as a promising field for future research. Finally, we provide a brief summary and outlook to encourage the development of novel 2D MOFs for spintronics applications.
Collapse
Affiliation(s)
- Xiaoli Yan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xi Su
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jian Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Chao Jin
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Processing Technology, Department of Applied Physics, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Long Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
9
|
Li J, Kumar A, Johnson BA, Ott S. Experimental manifestation of redox-conductivity in metal-organic frameworks and its implication for semiconductor/insulator switching. Nat Commun 2023; 14:4388. [PMID: 37474545 PMCID: PMC10359279 DOI: 10.1038/s41467-023-40110-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
Electric conductivity in metal-organic frameworks (MOFs) follows either a band-like or a redox-hopping charge transport mechanism. While conductivity by the band-like mechanism is theoretically and experimentally well established, the field has struggled to experimentally demonstrate redox conductivity that is promoted by the electron hopping mechanism. Such redox conductivity is predicted to maximize at the mid-point potential of the redox-active units in the MOF, and decline rapidly when deviating from this situation. Herein, we present direct experimental evidence for redox conductivity in fluorine-doped tin oxide surface-grown thin films of Zn(pyrazol-NDI) (pyrazol-NDI = 1,4-bis[(3,5-dimethyl)-pyrazol-4-yl]naphthalenediimide). Following Nernstian behavior, the proportion of reduced and oxidized NDI linkers can be adjusted by the applied potential. Through a series of conductivity measurements, it is demonstrated that the MOF exhibits minimal electric resistance at the mid-point potentials of the NDI linker, and conductivity is enhanced by more than 10000-fold compared to that of either the neutral or completely reduced films. The generality of redox conductivity is demonstrated in MOFs with different linkers and secondary building units, and its implication for applications that require switching between insulating and semiconducting regimes is discussed.
Collapse
Affiliation(s)
- Jingguo Li
- Department of Chemistry-Ångström Laboratory, Uppsala University, 75120, Uppsala, Sweden
| | - Amol Kumar
- Department of Chemistry-Ångström Laboratory, Uppsala University, 75120, Uppsala, Sweden
| | - Ben A Johnson
- Department of Chemistry-Ångström Laboratory, Uppsala University, 75120, Uppsala, Sweden
- Technical University of Munich (TUM), Campus Straubing for Biotechnology and Sustainability, Uferstraße 53, Straubing, 94315, Germany
| | - Sascha Ott
- Department of Chemistry-Ångström Laboratory, Uppsala University, 75120, Uppsala, Sweden.
| |
Collapse
|
10
|
Wang P, Xing J, Jiang X, Zhao J. Transition-Metal Interlink Neural Network: Machine Learning of 2D Metal-Organic Frameworks with High Magnetic Anisotropy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33726-33733. [PMID: 35830170 DOI: 10.1021/acsami.2c08991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) metal-organic framework (MOF) materials with large perpendicular magnetic anisotropy energy (MAE) are important candidates for high-density magnetic storage. The MAE-targeted high-throughput screening of 2D MOFs is currently limited by the time-consuming electronic structure calculations. In this study, a machine learning model, namely, transition-metal interlink neural network (TMINN) based on a database with 1440 2D MOF materials is developed to quickly and accurately predict MAE. The well-trained TMINN model for MAE successfully captures the general correlation between the geometrical configurations and the MAEs. We explore the MAEs of 2583 other 2D MOFs using our trained TMINN model. From these two databases, we obtain 11 unreported 2D ferromagnetic MOFs with MAEs over 35 meV/atom, which are further demonstrated by the high-level density functional theory calculations. Such results show good performance of the extrapolation predictions of TMINN. We also propose some simple design rules to acquire 2D MOFs with large MAEs by building a Pearson correlation coefficient map between various geometrical descriptors and MAE. Our developed TMINN model provides a powerful tool for high-throughput screening and intentional design of 2D magnetic MOFs with large MAE.
Collapse
Affiliation(s)
- Pengju Wang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Jianpei Xing
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Xue Jiang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| |
Collapse
|
11
|
Agafonov MA, Alexandrov EV, Artyukhova NA, Bekmukhamedov GE, Blatov VA, Butova VV, Gayfulin YM, Garibyan AA, Gafurov ZN, Gorbunova YG, Gordeeva LG, Gruzdev MS, Gusev AN, Denisov GL, Dybtsev DN, Enakieva YY, Kagilev AA, Kantyukov AO, Kiskin MA, Kovalenko KA, Kolker AM, Kolokolov DI, Litvinova YM, Lysova AA, Maksimchuk NV, Mironov YV, Nelyubina YV, Novikov VV, Ovcharenko VI, Piskunov AV, Polyukhov DM, Polyakov VA, Ponomareva VG, Poryvaev AS, Romanenko GV, Soldatov AV, Solovyeva MV, Stepanov AG, Terekhova IV, Trofimova OY, Fedin VP, Fedin MV, Kholdeeva OA, Tsivadze AY, Chervonova UV, Cherevko AI, Shul′gin VF, Shutova ES, Yakhvarov DG. METAL-ORGANIC FRAMEWORKS IN RUSSIA: FROM THE SYNTHESIS AND STRUCTURE TO FUNCTIONAL PROPERTIES AND MATERIALS. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622050018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Yamazui D, Uchida K, Koyama S, Wu B, Iguchi H, Kosaka W, Miyasaka H, Takaishi S. Syntheses, Structures, and Properties of Coordination Polymers with 2,5-Dihydroxy-1,4-Benzoquinone and 4,4'-Bipyridyl Synthesized by In Situ Hydrolysis Method. ACS OMEGA 2022; 7:18259-18266. [PMID: 35694494 PMCID: PMC9178755 DOI: 10.1021/acsomega.1c07077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The coordination polymers (CPs) with binary ligands, including 2,5-dihydroxy-1,4-benzoquinone (H2DHBQ) and 4,4'-bipyridyl (bpy), were synthesized using in situ hydrolysis of 2,5-dimethoxy-1,4-benzoquinone (DMBQ). Three kinds of CPs were obtained depending on the metal ions. For M = Mn and Zn, a 1D zigzag chain structure with cis conformation ( cis-1D-M) was obtained, whereas Co, Ni, and Cu compounds afforded a 2D net structure with trans conformation (trans -2D-M) with a 1D pore. A linear chain structure was also obtained for M = Cu. Magnetic susceptibility (χM T) at 300 K in cis -1D-Mn and trans -2D-Co was evaluated to be 4.421 and 2.950 cm3 K mol-1, respectively, indicating that both compounds are in the high-spin state. According to the N2 adsorption isotherms at 77 K, trans -2D-Ni showed microporosity with the BET surface area of 177 m2 g-1, whereas the isomorphic trans -2D-Co rarely adsorbed N2 at 77 K. This phenomenon was explained by the difference of diffusion kinetics of the adsorbent molecules, which was supported by the CO2 adsorption isotherms at 195 K. The optical band gaps of cis -1D-Mn, cis -1D-Zn, trans -2D-Co, and trans -2D-Ni were estimated to be 1.6, 1.8, 1.0, and 1.1 eV, respectively, by using UV-vis-NIR spectroscopy.
Collapse
Affiliation(s)
- Daiki Yamazui
- Department
of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kaiji Uchida
- Department
of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shohei Koyama
- Department
of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Bin Wu
- Department
of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Hiroaki Iguchi
- Department
of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Wataru Kosaka
- Institute
for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Hitoshi Miyasaka
- Institute
for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Shinya Takaishi
- Department
of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
13
|
Hou X, Truong Nguyen G, Xu T, Wei H, Seng Herng T, Huo G, Wang D, Ding J, Wu S, Ungur L, Wu J. Stable Triarylmethyl Radicals and Cobalt(II) Ions Based 1D/2D Coordination Polymers. Chemistry 2022; 28:e202200687. [DOI: 10.1002/chem.202200687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Xudong Hou
- Department of Chemistry National University of Singapore 3 Science drive 3 117543 Singapore Singapore
| | - Giang Truong Nguyen
- Department of Chemistry National University of Singapore 3 Science drive 3 117543 Singapore Singapore
| | - Tingting Xu
- Department of Chemistry National University of Singapore 3 Science drive 3 117543 Singapore Singapore
| | - Haipeng Wei
- Department of Chemistry National University of Singapore 3 Science drive 3 117543 Singapore Singapore
| | - Tun Seng Herng
- Department of Materials Science and Engineering National University of Singapore 119260 Singapore Singapore
| | - Guifei Huo
- Department of Chemistry National University of Singapore 3 Science drive 3 117543 Singapore Singapore
| | - Dingguan Wang
- Department of Chemistry National University of Singapore 3 Science drive 3 117543 Singapore Singapore
| | - Jun Ding
- Department of Materials Science and Engineering National University of Singapore 119260 Singapore Singapore
| | - Shaofei Wu
- Department of Chemistry National University of Singapore 3 Science drive 3 117543 Singapore Singapore
| | - Liviu Ungur
- Department of Chemistry National University of Singapore 3 Science drive 3 117543 Singapore Singapore
| | - Jishan Wu
- Department of Chemistry National University of Singapore 3 Science drive 3 117543 Singapore Singapore
| |
Collapse
|
14
|
Li Y, Xi J, Ferrando-Soria J, Zhang YQ, Wang W, Song Y, Guo Y, Pardo E, Liu X. Slow magnetic relaxation in a trigonal-planar mononuclear Fe(II) complex. Dalton Trans 2022; 51:8266-8272. [DOI: 10.1039/d2dt00899h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on a β-diketiminate ligand, an iron(III) tetrahedral high-spin complex, [LFeIII(Cl)2] (1), and an iron(II) high-spin triangular planar complex, [LFeIICl] (2), have been synthesized and structurally characterized. Also, complex 1...
Collapse
|
15
|
Bubnov MP, Teplova IA, Baranov E, Fukin G. Two-dimensional coordination polymer formed due to the unusual coordination of C O group in bis-dioxolene manganese complex. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Clutterbuck KM, Abrahams BF, Hudson TA, van Koeverden MP. Mixed valency in a neutral 1D Fe-chloranilate coordination polymer. Dalton Trans 2022; 51:9199-9205. [DOI: 10.1039/d1dt04368d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A neutral Fe-chloranilate chain, with triphenylphosphine oxide co-ligands, represents a rare example of a one-dimensional chain in which there is a temperature dependent electron transfer from the Fe(ii) centre to the bridging chloranilate ligand.
Collapse
Affiliation(s)
| | - Brendan F. Abrahams
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Timothy A. Hudson
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | | |
Collapse
|
17
|
Freund R, Zaremba O, Arnauts G, Ameloot R, Skorupskii G, Dincă M, Bavykina A, Gascon J, Ejsmont A, Goscianska J, Kalmutzki M, Lächelt U, Ploetz E, Diercks CS, Wuttke S. Der derzeitige Stand von MOF‐ und COF‐Anwendungen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ralph Freund
- Institut für Physik Universität Augsburg Deutschland
| | - Orysia Zaremba
- BCMaterials, Basque Center for Materials, UPV/EHU Science Park Leioa 48940 Spanien
- Department of Chemistry University of California-Berkeley USA
| | - Giel Arnauts
- Center for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven Belgien
| | - Rob Ameloot
- Center for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven Belgien
| | | | - Mircea Dincă
- Department of Chemistry Massachusetts Institute of Technology Cambridge USA
| | - Anastasiya Bavykina
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabien
| | - Jorge Gascon
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabien
| | | | | | | | - Ulrich Lächelt
- Department für Pharmazie und Center for NanoScience (CeNS) LMU München Deutschland
| | - Evelyn Ploetz
- Department Chemie und Center for NanoScience (CeNS) LMU München Deutschland
| | - Christian S. Diercks
- Materials Sciences Division Lawrence Berkeley National Laboratory Kavli Energy NanoSciences Institute Berkeley CA 94720 USA
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, UPV/EHU Science Park Leioa 48940 Spanien
- IKERBASQUE, Basque Foundation for Science Bilbao Spanien
| |
Collapse
|
18
|
Trofimova OY, Ershova IV, Maleeva AV, Yakushev IA, Dorovatovskii PV, Aisin RR, Piskunov AV. Metal–Organic Frameworks of Magnesium Based on 2,5-Dihydroxy-3,6-di-tert-butyl-para-benzoquinone. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421090086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Nath A, Asha KS, Mandal S. Conductive Metal-Organic Frameworks: Electronic Structure and Electrochemical Applications. Chemistry 2021; 27:11482-11538. [PMID: 33857340 DOI: 10.1002/chem.202100610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 12/14/2022]
Abstract
Smarter and minimization of devices are consistently substantial to shape the energy landscape. Significant amounts of endeavours have come forward as promising steps to surmount this formidable challenge. It is undeniable that material scientists were contemplating smarter material beyond purely inorganic or organic materials. To our delight, metal-organic frameworks (MOFs), an inorganic-organic hybrid scaffold with unprecedented tunability and smart functionalities, have recently started their journey as an alternative. In this review, we focus on such propitious potential of MOFs that was untapped over a long time. We cover the synthetic strategies and (or) post-synthetic modifications towards the formation of conductive MOFs and their underlying concepts of charge transfer with structural aspects. We addressed theoretical calculations with the experimental outcomes and spectroelectrochemistry, which will trigger vigorous impetus about intrinsic electronic behaviour of the conductive frameworks. Finally, we discussed electrocatalysts and energy storage devices stemming from conductive MOFs to meet energy demand in the near future.
Collapse
Affiliation(s)
- Akashdeep Nath
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| | - K S Asha
- School of Chemistry and Biochemistry, M. S. Ramaiah College of Arts Science and Commerce, Bangaluru, 560054, India
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
20
|
Redox Activity as a Powerful Strategy to Tune Magnetic and/or Conducting Properties in Benzoquinone-Based Metal-Organic Frameworks. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7080109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multifunctional molecular materials have attracted material scientists for several years as they are promising materials for the future generation of electronic devices. Careful selection of their molecular building blocks allows for the combination and/or even interplay of different physical properties in the same crystal lattice. Incorporation of redox activity in these networks is one of the most appealing and recent synthetic strategies used to enhance magnetic and/or conducting and/or optical properties. Quinone derivatives are excellent redox-active linkers, widely used for various applications such as electrode materials, flow batteries, pseudo-capacitors, etc. Quinones undergo a reversible two-electron redox reaction to form hydroquinone dianions via intermediate semiquinone radical formation. Moreover, the possibility to functionalize the six-membered ring of the quinone by various substituents/functional groups make them excellent molecular building blocks for the construction of multifunctional tunable metal-organic frameworks (MOFs). An overview of the recent advances on benzoquinone-based MOFs, with a particular focus on key examples where magnetic and/or conducting properties are tuned/switched, even simultaneously, by playing with redox activity, is herein envisioned.
Collapse
|
21
|
Freund R, Zaremba O, Arnauts G, Ameloot R, Skorupskii G, Dincă M, Bavykina A, Gascon J, Ejsmont A, Goscianska J, Kalmutzki M, Lächelt U, Ploetz E, Diercks CS, Wuttke S. The Current Status of MOF and COF Applications. Angew Chem Int Ed Engl 2021; 60:23975-24001. [DOI: 10.1002/anie.202106259] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Ralph Freund
- Solid State Chemistry University of Augsburg Germany
| | - Orysia Zaremba
- BCMaterials, Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spain
- Department of Chemistry University of California-Berkeley USA
| | - Giel Arnauts
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS) KU Leuven Belgium
| | - Rob Ameloot
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS) KU Leuven Belgium
| | | | - Mircea Dincă
- Department of Chemistry Massachusetts Institute of Technology Cambridge USA
| | - Anastasiya Bavykina
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabia
| | - Jorge Gascon
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabia
| | | | | | | | - Ulrich Lächelt
- Department of Pharmacy and Center for NanoScience (CeNS) LMU Munich Germany
| | - Evelyn Ploetz
- Department of Chemistry and Center for NanoScience (CeNS) LMU Munich Germany
| | - Christian S. Diercks
- Materials Sciences Division Lawrence Berkeley National Laboratory Kavli Energy NanoSciences Institute Berkeley CA 94720 USA
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spain
- IKERBASQUE, Basque Foundation for Science Bilbao Spain
| |
Collapse
|
22
|
Magott M, Gaweł B, Sarewicz M, Reczyński M, Ogorzały K, Makowski W, Pinkowicz D. Large breathing effect induced by water sorption in a remarkably stable nonporous cyanide-bridged coordination polymer. Chem Sci 2021; 12:9176-9188. [PMID: 34276948 PMCID: PMC8261731 DOI: 10.1039/d1sc02060a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/01/2021] [Indexed: 11/21/2022] Open
Abstract
While metal-organic frameworks (MOFs) are at the forefront of cutting-edge porous materials, extraordinary sorption properties can also be observed in Prussian Blue Analogs (PBAs) and related materials comprising extremely short bridging ligands. Herein, we present a bimetallic nonporous cyanide-bridged coordination polymer (CP) {[Mn(imH)]2[Mo(CN)8]} n (1Mn; imH = imidazole) that can efficiently and reversibly capture and release water molecules over tens of cycles without any fatigue despite being based on one of the shortest bridging ligands known - the cyanide. The sorption performance of {[Mn(imH)]2[Mo(CN)8]} n matches or even outperforms MOFs that are typically selected for water harvesting applications with perfect sorption reversibility and very low desorption temperatures. Water sorption in 1Mn is possible due to the breathing effect (accompanied by a dramatic cyanide-framework transformation) occurring in three well-defined steps between four different crystal phases studied structurally by X-ray diffraction structural analysis. Moreover, the capture of H2O by 1Mn switches the EPR signal intensity of the MnII centres, which has been demonstrated by in situ EPR measurements and enables monitoring of the hydration level of 1Mn by EPR. The sorption of water in 1Mn controls also its photomagnetic behavior at the cryogenic regime, thanks to the presence of the [MoIV(CN)8]4- photomagnetic chromophore in the structure. These observations demonstrate the extraordinary sorption potential of cyanide-bridged CPs and the possibility to merge it with the unique physical properties of this class of compounds arising from their bimetallic character (e.g. photomagnetism and long-range magnetic ordering).
Collapse
Affiliation(s)
- Michał Magott
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Bartłomiej Gaweł
- Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU) 7491 Trondheim Norway
| | - Marcin Sarewicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 30-387 Kraków Poland
| | - Mateusz Reczyński
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Karolina Ogorzały
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Wacław Makowski
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Dawid Pinkowicz
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| |
Collapse
|
23
|
Chen J, Taniguchi K, Sekine Y, Miyasaka H. Magnetic Phase Switching Performance in an Fe-Tetraoxolene-Layered Metal-Organic Framework via Electrochemical Cycling. Inorg Chem 2021; 60:9456-9460. [PMID: 34132544 DOI: 10.1021/acs.inorgchem.1c00576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The iron-based tetraoxolene honeycomb-layered compound (NPr4)2[Fe2(Cl2An)3] (1; NPr4+ = tetrapropylammonium cation; Cl2An2- = 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinonate) was used as the cathode material for lithium-ion batteries. We observed a charge-cycling performance (∼16 times) with three electrons/Li+ ion insertion and extraction, corresponding to the stoichiometry redox of Cl2An2- + e- ↔ Cl2An·3- and Fe3+ + e- ↔ Fe2+. The generation/annihilation of radicals, Cl2An·3-, enables the significant improvement/deterioration of the magnetic phase transition temperature with Tc = 100 K.
Collapse
Affiliation(s)
- Jian Chen
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Kouji Taniguchi
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB) Kyoto University, Kyoto 615-8520, Japan.,PRESTO, Japan Science and Technology Agency (JST), 5-3 Yonbancho, Chiyoda-ku, Tokyo 102-8666, Japan
| | - Yoshihiro Sekine
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Hitoshi Miyasaka
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
24
|
Pattengale B, Neu J, Tada A, Hu G, Karpovich CJ, Brudvig GW. Cation-exchanged conductive Mn2DSBDC metal–organic frameworks: Synthesis, structure, and THz conductivity. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Meshcheryakova IN, Trofimova OY, Druzhkov NO, Pashanova KI, Yakushev IA, Dorovatovskii PV, Khrizanforov MN, Budnikova YG, Aisin RR, Piskunov AV. Magnesium and Nickel Complexes with Bis(p-iminoquinone) Redox-Active Ligand. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421050043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Poorly soluble in the most part of organic solvents dimeric complexes $${\text{M}}{{{\text{g}}}_{{\text{2}}}}{\text{L}}_{2}^{2}$$·4DMF (I) and $${\text{N}}{{{\text{i}}}_{{\text{2}}}}{\text{L}}_{2}^{2}$$·4DMF (II) (L is 4,4'-(1,4-phenylenebis(azanylylidene))bis(3,6-di-tert-butyl-2-hydroxycyclohexa-2,5-dien-1-one dianion)) are synthesized by the reactions of magnesium and nickel acetates with the ditopic redox-active ligand of the hydroxy-para-iminoquinone type in a DMF solution. The molecular and crystal structures of the synthesized compounds are determined by X-ray diffraction analysis (CIF files CCDC nos. 2045665 (I) and 2045666 (II·3DMF)). The thermal stability is studied by thermogravimetry. The redox-active character of the organic bridging ligand in the dimeric complexes $${\text{M}}{{{\text{g}}}_{{\text{2}}}}{\text{L}}_{2}^{2}$$·4DMF and $${\text{N}}{{{\text{i}}}_{{\text{2}}}}{\text{L}}_{2}^{2}$$·4DMF is confirmed by the data of solid-phase electrochemistry.
Collapse
|
26
|
Trofimova OY, Maleeva AV, Ershova IV, Cherkasov AV, Fukin GK, Aysin RR, Kovalenko KA, Piskunov AV. Heteroleptic La III Anilate/Dicarboxylate Based Neutral 3D-Coordination Polymers. Molecules 2021; 26:2486. [PMID: 33923226 PMCID: PMC8123117 DOI: 10.3390/molecules26092486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 11/30/2022] Open
Abstract
Three new 3D metal-organic frameworks of lanthanum based on mixed anionic ligands, [(La2(pQ)2(BDC)4)·4DMF]n, [(La2(pQ)2(DHBDC)4)·4DMF]n, [(La2(CA)2(BDC)4)·4DMF]n (pQ-dianion of 2,5-dihydroxy-3,6-di-tert-butyl-para-quinone, CA-dianion of chloranilic acid, BDC-1,4-benzenedicarboxylate, DHBDC-2,5-dihydroxy-1,4-benzenedicarboxylate and DMF-N,N'-dimethylformamide), were synthesized using solvothermal methodology. Coordination polymers demonstrate the rare xah or 4,6T187 topology of a 3D framework. The homoleptic 2D-coordination polymer [(La2(pQ)3)·4DMF]n was obtained as a by-product in the course of synthetic procedure optimization. The thermal stability, spectral characteristics and porosity of coordination polymers were investigated.
Collapse
Affiliation(s)
- Olesya Y. Trofimova
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Tropinin Str., 49, 603137 Nizhny Novgorod, Russia; (O.Y.T.); (A.V.M.); (I.V.E.); (A.V.C.); (G.K.F.)
| | - Arina V. Maleeva
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Tropinin Str., 49, 603137 Nizhny Novgorod, Russia; (O.Y.T.); (A.V.M.); (I.V.E.); (A.V.C.); (G.K.F.)
| | - Irina V. Ershova
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Tropinin Str., 49, 603137 Nizhny Novgorod, Russia; (O.Y.T.); (A.V.M.); (I.V.E.); (A.V.C.); (G.K.F.)
| | - Anton V. Cherkasov
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Tropinin Str., 49, 603137 Nizhny Novgorod, Russia; (O.Y.T.); (A.V.M.); (I.V.E.); (A.V.C.); (G.K.F.)
| | - Georgy K. Fukin
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Tropinin Str., 49, 603137 Nizhny Novgorod, Russia; (O.Y.T.); (A.V.M.); (I.V.E.); (A.V.C.); (G.K.F.)
| | - Rinat R. Aysin
- A. N. Nesmeyanov Institute of Organometallic Chemistry of the Russian Academy of Sciences, Vavilova Str., 28, 119991 Moscow, Russia;
| | - Konstantin A. Kovalenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, Acad. Lavrentiev Ave., 3, 630090 Novosibirsk, Russia;
| | - Alexandr V. Piskunov
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, Tropinin Str., 49, 603137 Nizhny Novgorod, Russia; (O.Y.T.); (A.V.M.); (I.V.E.); (A.V.C.); (G.K.F.)
| |
Collapse
|
27
|
Johnson EM, Ilic S, Morris AJ. Design Strategies for Enhanced Conductivity in Metal-Organic Frameworks. ACS CENTRAL SCIENCE 2021; 7:445-453. [PMID: 33791427 PMCID: PMC8006162 DOI: 10.1021/acscentsci.1c00047] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 05/04/2023]
Abstract
Metal-organic frameworks (MOFs) are a class of materials which exhibit permanent porosity, high surface area, and crystallinity. As a highly tunable middle ground between heterogeneous and homogeneous species, MOFs have the potential to suit a wide variety of applications, many of which require conductive materials. The continued development of conductive MOFs has provided an ever-growing library of materials with both intrinsic and guest-promoted conductivity, and factors which limit or enhance conductivity in MOFs have become more apparent. In this Outlook, the factors which are believed to influence the future of MOF conductivity most heavily are highlighted along with proposed methods of further developing these fields. Fundamental studies derived from these methods may provide pathways to raise conductivity across a wide range of MOF structures.
Collapse
Affiliation(s)
- Eric M. Johnson
- Department of Chemistry, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia 24061-0131, United States
| | - Stefan Ilic
- Department of Chemistry, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia 24061-0131, United States
| | - Amanda J. Morris
- Department of Chemistry, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia 24061-0131, United States
| |
Collapse
|
28
|
Perlepe P, Oyarzabal I, Mailman A, Yquel M, Platunov M, Dovgaliuk I, Rouzières M, Négrier P, Mondieig D, Suturina EA, Dourges MA, Bonhommeau S, Musgrave RA, Pedersen KS, Chernyshov D, Wilhelm F, Rogalev A, Mathonière C, Clérac R. Metal-organic magnets with large coercivity and ordering temperatures up to 242°C. Science 2020; 370:587-592. [DOI: 10.1126/science.abb3861] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Panagiota Perlepe
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, F-33600 Pessac, France
- Université de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Itziar Oyarzabal
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, F-33600 Pessac, France
- Chemistry Faculty, University of the Basque Country, UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Aaron Mailman
- Department of Chemistry, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Morgane Yquel
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, F-33600 Pessac, France
- Université de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Mikhail Platunov
- ESRF-The European Synchrotron, CS 40220, F-38043 Grenoble Cedex 9, France
| | - Iurii Dovgaliuk
- Swiss-Norwegian Beamlines at the European Synchrotron Radiation Facility, F-38000 Grenoble, France
| | - Mathieu Rouzières
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, F-33600 Pessac, France
| | - Philippe Négrier
- Université de Bordeaux, CNRS, Laboratoire Ondes et Matière d’Aquitaine, UMR 5798, F-33400 Talence, France
| | - Denise Mondieig
- Université de Bordeaux, CNRS, Laboratoire Ondes et Matière d’Aquitaine, UMR 5798, F-33400 Talence, France
| | | | - Marie-Anne Dourges
- Université de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Sébastien Bonhommeau
- Université de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Rebecca A. Musgrave
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, F-33600 Pessac, France
| | - Kasper S. Pedersen
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, F-33600 Pessac, France
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Dmitry Chernyshov
- Swiss-Norwegian Beamlines at the European Synchrotron Radiation Facility, F-38000 Grenoble, France
| | - Fabrice Wilhelm
- ESRF-The European Synchrotron, CS 40220, F-38043 Grenoble Cedex 9, France
| | - Andrei Rogalev
- ESRF-The European Synchrotron, CS 40220, F-38043 Grenoble Cedex 9, France
| | - Corine Mathonière
- Université de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Rodolphe Clérac
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, F-33600 Pessac, France
| |
Collapse
|
29
|
Ovcharenko VI, Kuznetsova OV. New method for the synthesis of heterospin metal complexes with nitroxides. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4981] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Biggins N, Ziebel ME, Gonzalez MI, Long JR. Crystallographic characterization of the metal-organic framework Fe 2(bdp) 3 upon reductive cation insertion. Chem Sci 2020; 11:9173-9180. [PMID: 34123166 PMCID: PMC8163410 DOI: 10.1039/d0sc03383a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Precisely locating extra-framework cations in anionic metal–organic framework compounds remains a long-standing, yet crucial, challenge for elucidating structure–performance relationships in functional materials. Single-crystal X-ray diffraction is one of the most powerful approaches for this task, but single crystals of frameworks often degrade when subjected to post-synthetic metalation or reduction. Here, we demonstrate the growth of sizable single crystals of the robust metal–organic framework Fe2(bdp)3 (bdp2− = benzene-1,4-dipyrazolate) and employ single-crystal-to-single-crystal chemical reductions to access the solvated framework materials A2Fe2(bdp)3·yTHF (A = Li+, Na+, K+). X-ray diffraction analysis of the sodium and potassium congeners reveals that the cations are located near the center of the triangular framework channels and are stabilized by weak cation–π interactions with the framework ligands. Freeze-drying with benzene enables isolation of activated single crystals of Na0.5Fe2(bdp)3 and Li2Fe2(bdp)3 and the first structural characterization of activated metal–organic frameworks wherein extra-framework alkali metal cations are also structurally located. Comparison of the solvated and activated sodium-containing structures reveals that the cation positions differ in the two materials, likely due to cation migration that occurs upon solvent removal to maximize stabilizing cation–π interactions. Hydrogen adsorption data indicate that these cation–framework interactions are sufficient to diminish the effective cationic charge, leading to little or no enhancement in gas uptake relative to Fe2(bdp)3. In contrast, Mg0.85Fe2(bdp)3 exhibits enhanced H2 affinity and capacity over the non-reduced parent material. This observation shows that increasing the charge density of the pore-residing cation serves to compensate for charge dampening effects resulting from cation–framework interactions and thereby promotes stronger cation–H2 interactions. Single-crystal X-ray diffraction reveals structural influences on gas adsorption properties in anionic metal–organic frameworks.![]()
Collapse
Affiliation(s)
- Naomi Biggins
- Department of Chemistry, University of California Berkeley California 94720 USA .,Materials Sciences Division, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | - Michael E Ziebel
- Department of Chemistry, University of California Berkeley California 94720 USA .,Materials Sciences Division, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | - Miguel I Gonzalez
- Department of Chemistry, University of California Berkeley California 94720 USA
| | - Jeffrey R Long
- Department of Chemistry, University of California Berkeley California 94720 USA .,Department of Chemical and Biomolecular Engineering, University of California Berkeley California 94720 USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| |
Collapse
|
31
|
Xie J, Wang L, Anderson JS. Heavy chalcogenide-transition metal clusters as coordination polymer nodes. Chem Sci 2020; 11:8350-8372. [PMID: 34123098 PMCID: PMC8163426 DOI: 10.1039/d0sc03429k] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/20/2020] [Indexed: 12/29/2022] Open
Abstract
While metal-oxygen clusters are widely used as secondary building units in the construction of coordination polymers or metal-organic frameworks, multimetallic nodes with heavier chalcogenide atoms (S, Se, and Te) are comparatively untapped. The lower electronegativity of heavy chalcogenides means that transition metal clusters of these elements generally exhibit enhanced coupling, delocalization, and redox-flexibility. Leveraging these features in coordination polymers provides these materials with extraordinary properties in catalysis, conductivity, magnetism, and photoactivity. In this perspective, we summarize common transition metal heavy chalcogenide building blocks including polynuclear metal nodes with organothiolate/selenolate or anionic heavy chalcogenide atoms. Based on recent discoveries, we also outline potential challenges and opportunities for applications in this field.
Collapse
Affiliation(s)
- Jiaze Xie
- Department of Chemistry, University of Chicago Chicago Illinois 60637 USA
| | - Lei Wang
- Department of Chemistry, University of Chicago Chicago Illinois 60637 USA
| | - John S Anderson
- Department of Chemistry, University of Chicago Chicago Illinois 60637 USA
| |
Collapse
|
32
|
Song X, Liu J, Zhang T, Chen L. 2D conductive metal-organic frameworks for electronics and spintronics. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9791-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
33
|
Mancuso JL, Mroz AM, Le KN, Hendon CH. Electronic Structure Modeling of Metal-Organic Frameworks. Chem Rev 2020; 120:8641-8715. [PMID: 32672939 DOI: 10.1021/acs.chemrev.0c00148] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Owing to their molecular building blocks, yet highly crystalline nature, metal-organic frameworks (MOFs) sit at the interface between molecule and material. Their diverse structures and compositions enable them to be useful materials as catalysts in heterogeneous reactions, electrical conductors in energy storage and transfer applications, chromophores in photoenabled chemical transformations, and beyond. In all cases, density functional theory (DFT) and higher-level methods for electronic structure determination provide valuable quantitative information about the electronic properties that underpin the functions of these frameworks. However, there are only two general modeling approaches in conventional electronic structure software packages: those that treat materials as extended, periodic solids, and those that treat materials as discrete molecules. Each approach has features and benefits; both have been widely employed to understand the emergent chemistry that arises from the formation of the metal-organic interface. This Review canvases these approaches to date, with emphasis placed on the application of electronic structure theory to explore reactivity and electron transfer using periodic, molecular, and embedded models. This includes (i) computational chemistry considerations such as how functional, k-grid, and other model variables are selected to enable insights into MOF properties, (ii) extended solid models that treat MOFs as materials rather than molecules, (iii) the mechanics of cluster extraction and subsequent chemistry enabled by these molecular models, (iv) catalytic studies using both solids and clusters thereof, and (v) embedded, mixed-method approaches, which simulate a fraction of the material using one level of theory and the remainder of the material using another dissimilar theoretical implementation.
Collapse
Affiliation(s)
- Jenna L Mancuso
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Austin M Mroz
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Khoa N Le
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| |
Collapse
|
34
|
Mondal A, Roy S, Konar S. Remarkable Energy Barrier for Magnetization Reversal in 3D and 2D Dysprosium-Chloranilate-Based Coordination Polymers. Chemistry 2020; 26:8774-8783. [PMID: 32315101 DOI: 10.1002/chem.202000438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/16/2020] [Indexed: 12/26/2022]
Abstract
Herein, two coordination polymers (CPs) [{Dy(Cl2 An)1.5 (CH3 OH)}⋅4.5 H2 O]n (1) and [Dy(Cl2 An)1.5 (DMF)2 ]n (2), in which Cl2 An is chloranilate (2,5-dihydroxy-1,4-benzoquinone dianion), exhibiting field-induced single-molecule magnet behavior with moderate barrier of magnetization reversal are reported. Detailed structural and topological analysis disclosed that 1 has a 3D network, whereas 2 has a 2D layered-type structure. In both CPs, magnetic measurements showed weak antiferromagnetic exchange interaction between the dysprosium centers and field-induced slow magnetic relaxation with barriers of 175(9)K and 145(7)K for 1 and 2, respectively. Notably, the energy barriers of magnetization reversal of 1 and 2 are remarkable for metal-chloranilate-based 3D (1) and 2D (2) CPs. The temperature and field dependence of relaxation time indicate the presence of multiple relaxation pathways, such as direct, quantum tunneling of magnetization, Raman, and Orbach processes, in both CPs. Ab initio theoretical calculations reinforced the experimentally observed higher energy barrier in 1 as compared with 2 due to the presence of large transverse anisotropy in the ground state in the latter. The average transition magnetic moment between the computed low-lying spin-orbit states also rationalized the relaxation as Orbach and Raman processes through the first excited state. BS-DFT calculations were carried out for both CPs to provide more insight into the exchange interaction.
Collapse
Affiliation(s)
- Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Subhadip Roy
- Department of Chemistry, The ICFAI University Tripura, Kamalghat, Mohanpur, Agartala, Tripura, 799210, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
35
|
Evans JD, Bon V, Senkovska I, Lee HC, Kaskel S. Four-dimensional metal-organic frameworks. Nat Commun 2020; 11:2690. [PMID: 32483346 PMCID: PMC7264271 DOI: 10.1038/s41467-020-16527-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/15/2020] [Indexed: 11/08/2022] Open
Abstract
Recognising timescale as an adjustable dimension in porous solids provides a new perspective to develop novel four-dimensional framework materials. The deliberate design of three-dimensional porous framework architectures is a developed field; however, the understanding of dynamics in open frameworks leaves a number of key questions unanswered: What factors determine the spatiotemporal evolution of deformable networks? Can we deliberately engineer the response of dynamic materials along a time-axis? How can we engineer energy barriers for the selective recognition of molecules? Answering these questions will require significant methodological development to understand structural dynamics across a range of time and length scales.
Collapse
Affiliation(s)
- Jack D Evans
- Technische Universität Dresden, Bergstrasse 66, 01062, Dresden, Germany
| | - Volodymyr Bon
- Technische Universität Dresden, Bergstrasse 66, 01062, Dresden, Germany
| | - Irena Senkovska
- Technische Universität Dresden, Bergstrasse 66, 01062, Dresden, Germany
| | - Hui-Chun Lee
- Technische Universität Dresden, Bergstrasse 66, 01062, Dresden, Germany
| | - Stefan Kaskel
- Technische Universität Dresden, Bergstrasse 66, 01062, Dresden, Germany.
| |
Collapse
|
36
|
Doheny PW, Clegg JK, Tuna F, Collison D, Kepert CJ, D'Alessandro DM. Quantification of the mixed-valence and intervalence charge transfer properties of a cofacial metal-organic framework via single crystal electronic absorption spectroscopy. Chem Sci 2020; 11:5213-5220. [PMID: 34122977 PMCID: PMC8159307 DOI: 10.1039/d0sc01521k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Gaining a fundamental understanding of charge transfer mechanisms in three-dimensional Metal-Organic Frameworks (MOFs) is crucial to the development of electroactive and conductive porous materials. These materials have potential in applications in porous conductors, electrocatalysts and energy storage devices; however the structure-property relationships pertaining to charge transfer and its quantification are relatively poorly understood. Here, the cofacial Cd(ii)-based MOF [Cd(BPPTzTz)(tdc)]·2DMF (where BPPTzTz = 2,5-bis(4-(pyridin-4-yl)phenyl)thiazolo[5,4-d]thiazole, tdc2- = 2,5-thiophene dicarboxylate) exhibits Intervalence Charge Transfer (IVCT) within its three-dimensional structure by virtue of the close, cofacial stacking of its redox-active BPPTzTz ligands. The mixed-valence and IVCT properties are characterised using a combined electrochemical, spectroelectrochemical and computational approach. Single crystal electronic absorption spectroscopy was employed to obtain the solid-state extinction coefficient, enabling the application of Marcus-Hush theory. The electronic coupling constant, H ab, of 145 cm-1 was consistent with the localised mixed-valence properties of both this framework and analogous systems that use alternative methods to obtain the H ab parameter. This work demonstrates the first report of the successful characterisation of IVCT in a MOF material using single crystal electronic absorption spectroscopy and serves as an attractive alternative to more complex methods due to its simplicity and applicability.
Collapse
Affiliation(s)
- Patrick W Doheny
- School of Chemistry, The University of Sydney New South Wales 2006 Australia +61 2 93513777
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia Queensland 4072 Australia
| | - Floriana Tuna
- Department of Chemistry and Photon Science Institute, The University of Manchester Manchester M13 9PL UK
| | - David Collison
- Department of Chemistry and Photon Science Institute, The University of Manchester Manchester M13 9PL UK
| | - Cameron J Kepert
- School of Chemistry, The University of Sydney New South Wales 2006 Australia +61 2 93513777
| | - Deanna M D'Alessandro
- School of Chemistry, The University of Sydney New South Wales 2006 Australia +61 2 93513777
| |
Collapse
|
37
|
Abstract
![]()
Metal–organic frameworks (MOFs)
are intrinsically porous
extended solids formed by coordination bonding between organic ligands
and metal ions or clusters. High electrical conductivity is rare in
MOFs, yet it allows for diverse applications in electrocatalysis,
charge storage, and chemiresistive sensing, among others. In this
Review, we discuss the efforts undertaken so far to achieve efficient
charge transport in MOFs. We focus on four common strategies that
have been harnessed toward high conductivities. In the “through-bond”
approach, continuous chains of coordination bonds between the metal
centers and ligands’ functional groups create charge transport
pathways. In the “extended conjugation” approach, the
metals and entire ligands form large delocalized systems. The “through-space”
approach harnesses the π–π stacking interactions
between organic moieties. The “guest-promoted” approach
utilizes the inherent porosity of MOFs and host–guest interactions.
Studies utilizing less defined transport pathways are also evaluated.
For each approach, we give a systematic overview of the structures
and transport properties of relevant materials. We consider the benefits
and limitations of strategies developed thus far and provide an overview
of outstanding challenges in conductive MOFs.
Collapse
Affiliation(s)
- Lilia S Xie
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Grigorii Skorupskii
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
38
|
Thorarinsdottir AE, Bjornsson R, Harris TD. Insensitivity of Magnetic Coupling to Ligand Substitution in a Series of Tetraoxolene Radical-Bridged Fe 2 Complexes. Inorg Chem 2020; 59:4634-4649. [PMID: 32196317 DOI: 10.1021/acs.inorgchem.9b03736] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The elucidation of magnetostructural correlations between bridging ligand substitution and strength of magnetic coupling is essential to the development of high-temperature molecule-based magnetic materials. Toward this end, we report the series of tetraoxolene-bridged FeII2 complexes [(Me3TPyA)2Fe2(RL)]n+ (Me3TPyA = tris(6-methyl-2-pyridylmethyl)amine; n = 2: OMeLH2 = 3,6-dimethoxy-2,5-dihydroxo-1,4-benzoquinone, ClLH2 = 3,6-dichloro-2,5-dihydroxo-1,4-benzoquinone, Na2[NO2L] = sodium 3,6-dinitro-2,5-dihydroxo-1,4-benzoquinone; n = 4: SMe2L = 3,6-bis(dimethylsulfonium)-2,5-dihydroxo-1,4-benzoquinone diylide) and their one-electron-reduced analogues. Variable-temperature dc magnetic susceptibility data reveal the presence of weak ferromagnetic superexchange between FeII centers in the oxidized species, with exchange constants of J = +1.2(2) (R = OMe, Cl) and +0.3(1) (R = NO2, SMe2) cm-1. In contrast, X-ray diffraction, cyclic voltammetry, and Mössbauer spectroscopy establish a ligand-centered radical in the reduced complexes. Magnetic measurements for the radical-bridged species reveal the presence of strong antiferromagnetic metal-radical coupling, with J = -57(10), -60(7), -58(6), and -65(8) cm-1 for R = OMe, Cl, NO2, and SMe2, respectively. The minimal effects of substituents in the 3- and 6-positions of RLx-• on the magnetic coupling strength is understood through electronic structure calculations, which show negligible spin density on the substituents and associated C atoms of the ring. Finally, the radical-bridged complexes are single-molecule magnets, with relaxation barriers of Ueff = 50(1), 41(1), 38(1), and 33(1) cm-1 for R = OMe, Cl, NO2, and SMe2, respectively. Taken together, these results provide the first examination of how bridging ligand substitution influences magnetic coupling in semiquinoid-bridged compounds, and they establish design criteria for the synthesis of semiquinoid-based molecules and materials.
Collapse
Affiliation(s)
| | - Ragnar Bjornsson
- Department of Inorganic Spectroscopy, Max-Planck-Institut für Chemische Energiekonversion, Mülheim an der Ruhr 45470, Germany
| | - T David Harris
- Department of Chemistry, Northwestern University, Evanston 60208, Illinois, United States.,Department of Chemistry, University of California, Berkeley 94720, California, United States
| |
Collapse
|
39
|
Abstract
Metal-organic frameworks represent the ultimate chemical platform on which to develop a new generation of designer magnets. In contrast to the inorganic solids that have dominated permanent magnet technology for decades, metal-organic frameworks offer numerous advantages, most notably the nearly infinite chemical space through which to synthesize predesigned and tunable structures with controllable properties. Moreover, the presence of a rigid, crystalline structure based on organic linkers enables the potential for permanent porosity and postsynthetic chemical modification of the inorganic and organic components. Despite these attributes, the realization of metal-organic magnets with high ordering temperatures represents a formidable challenge, owing largely to the typically weak magnetic exchange coupling mediated through organic linkers. Nevertheless, recent years have seen a number of exciting advances involving frameworks based on a wide range of metal ions and organic linkers. This review provides a survey of structurally characterized metal-organic frameworks that have been shown to exhibit magnetic order. Section 1 outlines the need for new magnets and the potential role of metal-organic frameworks toward that end, and it briefly introduces the classes of magnets and the experimental methods used to characterize them. Section 2 describes early milestones and key advances in metal-organic magnet research that laid the foundation for structurally characterized metal-organic framework magnets. Sections 3 and 4 then outline the literature of metal-organic framework magnets based on diamagnetic and radical organic linkers, respectively. Finally, Section 5 concludes with some potential strategies for increasing the ordering temperatures of metal-organic framework magnets while maintaining structural integrity and additional function.
Collapse
Affiliation(s)
| | - T David Harris
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
40
|
Liu L, Li L, Ziebel ME, Harris TD. Metal–Diamidobenzoquinone Frameworks via Post-Synthetic Linker Exchange. J Am Chem Soc 2020; 142:4705-4713. [DOI: 10.1021/jacs.9b11952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lujia Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Liang Li
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael E. Ziebel
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - T. David Harris
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
41
|
Kharitonov AD, Trofimova OY, Meshcheryakova IN, Fukin GK, Khrizanforov MN, Budnikova YH, Bogomyakov AS, Aysin RR, Kovalenko KA, Piskunov AV. 2D-metal–organic coordination polymers of lanthanides (La( iii), Pr( iii) and Nd( iii)) with redox-active dioxolene bridging ligands. CrystEngComm 2020. [DOI: 10.1039/d0ce00767f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
2D-coordination redox-active networks bearingt-Bu-substituted anilic bridged ligands and lanthanide ions were synthesized and characterized.
Collapse
Affiliation(s)
- Alexandr D. Kharitonov
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences
- Nizhny Novgorod
- Russian Federation
| | - Olesya Y. Trofimova
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences
- Nizhny Novgorod
- Russian Federation
| | - Irina N. Meshcheryakova
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences
- Nizhny Novgorod
- Russian Federation
| | - Georgy K. Fukin
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences
- Nizhny Novgorod
- Russian Federation
| | - Mikhail N. Khrizanforov
- A.E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan Scientific Center
- Russian Academy of Sciences
- Kazan
- Russian Federation
| | - Yulia H. Budnikova
- A.E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan Scientific Center
- Russian Academy of Sciences
- Kazan
- Russian Federation
| | - Artem S. Bogomyakov
- International Tomography Center SB RAS
- Novosibirsk
- Novosibirsk
- Russian Federation
| | - Rinat R. Aysin
- A.N. Nesmeyanov Institute of Organometallic Chemistry of Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Konstantin A. Kovalenko
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of Russian Academy of Sciences
- Novosibirsk
- Russian Federation
| | - Alexandr V. Piskunov
- G. A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences
- Nizhny Novgorod
- Russian Federation
| |
Collapse
|
42
|
Rubio-Giménez V, Tatay S, Martí-Gastaldo C. Electrical conductivity and magnetic bistability in metal–organic frameworks and coordination polymers: charge transport and spin crossover at the nanoscale. Chem Soc Rev 2020; 49:5601-5638. [DOI: 10.1039/c9cs00594c] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review aims to reassess the progress, issues and opportunities in the path towards integrating conductive and magnetically bistable coordination polymers and metal–organic frameworks as active components in electronic devices.
Collapse
Affiliation(s)
- Víctor Rubio-Giménez
- Instituto de Ciencia Molecular
- Universitat de València
- 46980 Paterna
- Spain
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions (cMACS)
| | - Sergio Tatay
- Instituto de Ciencia Molecular
- Universitat de València
- 46980 Paterna
- Spain
| | | |
Collapse
|
43
|
Wentz HC, Skorupskii G, Bonfim AB, Mancuso JL, Hendon CH, Oriel EH, Sazama GT, Campbell MG. Switchable electrical conductivity in a three-dimensional metal-organic framework via reversible ligand n-doping. Chem Sci 2019; 11:1342-1346. [PMID: 34123257 PMCID: PMC8148085 DOI: 10.1039/c9sc06150a] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Redox-active metal–organic frameworks (MOFs) are promising materials for a number of next-generation technologies, and recent work has shown that redox manipulation can dramatically enhance electrical conductivity in MOFs. However, ligand-based strategies for controlling conductivity remain under-developed, particularly those that make use of reversible redox processes. Here we report the first use of ligand n-doping to engender electrical conductivity in a porous 3D MOF, leading to tunable conductivity values that span over six orders of magnitude. Moreover, this work represents the first example of redox switching leading to reversible conductivity changes in a 3D MOF. Redox-active ligands are used to reversibly tune electrical conductivity in a porous 3D metal–organic framework (MOF).![]()
Collapse
Affiliation(s)
- Hanna C Wentz
- Department of Chemistry, Barnard College New York New York 10027 USA
| | - Grigorii Skorupskii
- Department of Chemistry, Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
| | - Ana B Bonfim
- Department of Chemistry, Barnard College New York New York 10027 USA
| | - Jenna L Mancuso
- Department of Chemistry and Biochemistry, University of Oregon Eugene Oregon 97403 USA
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry, University of Oregon Eugene Oregon 97403 USA
| | - Evan H Oriel
- Department of Chemistry, Lawrence University Appleton Wisconsin 54911 USA
| | - Graham T Sazama
- Department of Chemistry, Lawrence University Appleton Wisconsin 54911 USA
| | | |
Collapse
|
44
|
Xie J, Boyn JN, Filatov AS, McNeece AJ, Mazziotti DA, Anderson JS. Redox, transmetalation, and stacking properties of tetrathiafulvalene-2,3,6,7-tetrathiolate bridged tin, nickel, and palladium compounds. Chem Sci 2019; 11:1066-1078. [PMID: 34084362 PMCID: PMC8145528 DOI: 10.1039/c9sc04381k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here we report that capping the molecule TTFtt (TTFtt = tetrathiafulvalene-2,3,6,7-tetrathiolate) with dialkyl tin groups enables the isolation of a stable series of redox congeners and facile transmetalation to Ni and Pd. TTFtt has been proposed as an attractive building block for molecular materials for two decades as it combines the redox chemistry of TTF and dithiolene units. TTFttH4, however, is inherently unstable and the incorporation of TTFtt units into complexes or materials typically proceeds through the in situ generation of the tetraanion TTFtt4-. Capping of TTFtt4- with Bu2Sn2+ units dramatically improves the stability of the TTFtt moiety and furthermore enables the isolation of a redox series where the TTF core carries the formal charges of 0, +1, and +2. All of these redox congeners show efficient and clean transmetalation to Ni and Pd resulting in an analogous series of bimetallic complexes capped by 1,2-bis(diphenylphosphino)ethane (dppe) ligands. Furthermore, by using the same transmetalation method, we synthesized analogous palladium complexes capped by 1,1'-bis(diphenylphosphino)ferrocene (dppf) which had been previously reported. All of these species have been thoroughly characterized through a systematic survey of chemical and electronic properties by techniques including cyclic voltammetry (CV), ultraviolet-visible-near infrared spectroscopy (UV-vis-NIR), electron paramagnetic resonance spectroscopy (EPR), nuclear magnetic resonance spectroscopy (NMR) and X-ray diffraction (XRD). These detailed synthetic and spectroscopic studies highlight important differences between the transmetalation strategy presented here and previously reported synthetic methods for the installation of TTFtt. In addition, the utility of this stabilization strategy can be illustrated by the observation of unusual TTF radical-radical packing in the solid state and dimerization in the solution state. Theoretical calculations based on variational 2-electron reduced density matrix methods have been used to investigate these unusual interactions and illustrate fundamentally different levels of covalency and overlap depending on the orientations of the TTF cores. Taken together, this work demonstrates that tin-capped TTFtt units are ideal reagents for the installation of redox-tunable TTFtt ligands enabling the generation of entirely new geometric and electronic structures.
Collapse
Affiliation(s)
- Jiaze Xie
- Department of Chemistry, The James Franck Institute, University of Chicago Chicago Illinois 60637 USA
| | - Jan-Niklas Boyn
- Department of Chemistry, The James Franck Institute, University of Chicago Chicago Illinois 60637 USA
| | - Alexander S Filatov
- Department of Chemistry, The James Franck Institute, University of Chicago Chicago Illinois 60637 USA
| | - Andrew J McNeece
- Department of Chemistry, The James Franck Institute, University of Chicago Chicago Illinois 60637 USA
| | - David A Mazziotti
- Department of Chemistry, The James Franck Institute, University of Chicago Chicago Illinois 60637 USA
| | - John S Anderson
- Department of Chemistry, The James Franck Institute, University of Chicago Chicago Illinois 60637 USA
| |
Collapse
|
45
|
Zhang LLM, Zhou G, Zhou G, Lee HK, Zhao N, Prezhdo OV, Mak TCW. Core-dependent properties of copper nanoclusters: valence-pure nanoclusters as NIR TADF emitters and mixed-valence ones as semiconductors. Chem Sci 2019; 10:10122-10128. [PMID: 32055367 PMCID: PMC7003970 DOI: 10.1039/c9sc03455b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/06/2019] [Indexed: 01/05/2023] Open
Abstract
While valence-pure copper alkynyl nanoclusters show near-infrared TADF, the mixed-valence ones exhibit semiconductivity.
We report herein that copper alkynyl nanoclusters show metal-core dependent properties via a charge-transfer mechanism, which enables new understanding of their structure–property relationship. Initially, nanoclusters 1 and 2 bearing respective Cu(i)15 (C1) and Cu(i)28 (C2) cores were prepared and revealed to display near-infrared (NIR) photoluminescence mainly from the mixed alkynyl → Cu(i) ligand-to-metal charge transfer (LMCT) and cluster-centered transition, and they further exhibit thermally activated delayed fluorescence (TADF). Subsequently, a vanadate-induced oxidative approach to in situ generate a nucleating Cu(ii) cation led to assembly of 3 and 4 featuring respective [Cu(ii)O6]@Cu(i)47 (C3) and {[Cu(ii)O4]·[VO4]2}@Cu(i)46 (C4) cores. While interstitial occupancy of Cu(ii) triggers inter-valence charge-transfer (IVCT) from Cu(i) to Cu(ii) to quench the photoluminescence of 3 and 4, such a process facilitates charge mobility to render them semiconductive. Overall, metal-core modification results in an interplay between charge-transfer processes to switch TADF to semiconductivity, which underpins an unusual structure–property correlation for designed synthesis of metal nanoclusters with unique properties and functions.
Collapse
Affiliation(s)
- Leon Li-Min Zhang
- Department of Chemistry and Center of Novel Functional Molecules , The Chinese University of Hong Kong , Hong Kong SAR , People's Republic of China .
| | - Guodong Zhou
- Department of Electronic Engineering , The Chinese University of Hong Kong , Hong Kong SAR , People's Republic of China
| | - Guoqing Zhou
- Department of Chemistry , University of Southern California , Los Angeles , California 90089-1062 , USA
| | - Hung-Kay Lee
- Department of Chemistry and Center of Novel Functional Molecules , The Chinese University of Hong Kong , Hong Kong SAR , People's Republic of China .
| | - Ni Zhao
- Department of Electronic Engineering , The Chinese University of Hong Kong , Hong Kong SAR , People's Republic of China
| | - Oleg V Prezhdo
- Department of Chemistry , University of Southern California , Los Angeles , California 90089-1062 , USA
| | - Thomas C W Mak
- Department of Chemistry and Center of Novel Functional Molecules , The Chinese University of Hong Kong , Hong Kong SAR , People's Republic of China .
| |
Collapse
|