1
|
Yu N, Pasha M, Chua JJE. Redox changes and cellular senescence in Alzheimer's disease. Redox Biol 2024; 70:103048. [PMID: 38277964 PMCID: PMC10840360 DOI: 10.1016/j.redox.2024.103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
The redox process and cellular senescence are involved in a range of essential physiological functions. However, they are also implicated in pathological processes underlying age-related neurodegenerative disorders, including Alzheimer's disease (AD). Elevated levels of reactive oxygen species (ROS) are generated as a result of abnormal accumulation of beta-amyloid peptide (Aβ), tau protein, and heme dyshomeostasis and is further aggravated by mitochondria dysfunction and endoplasmic reticulum (ER) stress. Excessive ROS damages vital cellular components such as proteins, DNA and lipids. Such damage eventually leads to impaired neuronal function and cell death. Heightened oxidative stress can also induce cellular senescence via activation of the senescence-associated secretory phenotype to further exacerbate inflammation and tissue dysfunction. In this review, we focus on how changes in the redox system and cellular senescence contribute to AD and how they are affected by perturbations in heme metabolism and mitochondrial function. While potential therapeutic strategies targeting such changes have received some attention, more research is necessary to bring them into clinical application.
Collapse
Affiliation(s)
- Nicole Yu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; LSI Neurobiology Programme, National University of Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mazhar Pasha
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; LSI Neurobiology Programme, National University of Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - John Jia En Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; LSI Neurobiology Programme, National University of Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
2
|
Grcic L, Leech G, Kwan K, Storr T. Targeting misfolding and aggregation of the amyloid-β peptide and mutant p53 protein using multifunctional molecules. Chem Commun (Camb) 2024; 60:1372-1388. [PMID: 38204416 DOI: 10.1039/d3cc05834d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Biomolecule misfolding and aggregation play a major role in human disease, spanning from neurodegeneration to cancer. Inhibition of these processes is of considerable interest, and due to the multifactorial nature of these diseases, the development of drugs that act on multiple pathways simultaneously is a promising approach. This Feature Article focuses on the development of multifunctional molecules designed to inhibit the misfolding and aggregation of the amyloid-β (Aβ) peptide in Alzheimer's disease (AD), and the mutant p53 protein in cancer. While for the former, the goal is to accelerate the removal of the Aβ peptide and associated aggregates, for the latter, the goal is reactivation via stabilization of the active folded form of mutant p53 protein and/or aggregation inhibition. Due to the similar aggregation pathway of the Aβ peptide and mutant p53 protein, a common therapeutic approach may be applicable.
Collapse
Affiliation(s)
- Lauryn Grcic
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Grace Leech
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Kalvin Kwan
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
3
|
Dey C, Roy M, Dey A, Ghosh Dey S. Heme-Aβ in SDS micellar environment: Active site environment and reactivity. J Inorg Biochem 2023; 246:112271. [PMID: 37301164 DOI: 10.1016/j.jinorgbio.2023.112271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/13/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is a progressive neurodegenerative disorder that causes brain cell death. Oxidative stress derived from the accumulation of redox cofactors like heme in amyloid plaques originating from amyloid β (Aβ) peptides has been implicated in the pathogenesis of AD. In the past our group has studied the interactions and reactivities of heme with soluble oligomeric and aggregated forms of Aβ. In this manuscript we report the interaction of heme with Aβ that remains membrane bound using membrane mimetic SDS (sodium dodecyl sulfate) micellar medium. Employing different spectroscopic techniques viz. circular dichroism (CD), absorption (UV-Vis), electron paramagnetic resonance (EPR) and resonance Raman (rR) we find that Aβ binds heme using one of its three His (preferentially His13) in SDS micellar medium. We also find that Arg5 is an essential distal residue responsible for higher peroxidase activity of heme bound Aβ in this membrane mimetic environment than free heme. This peroxidase activity exerted by even membrane bound heme-Aβ can potentially be more detrimental as the active site remains close to membranes and can hence oxidise the lipid bilayer of the neuronal cell, which can induce cell apoptosis. Thus, heme-Aβ in solution as well as in membrane-bound form are detrimental.
Collapse
Affiliation(s)
- Chinmay Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
4
|
Pal I, Dey SG. The Role of Heme and Copper in Alzheimer's Disease and Type 2 Diabetes Mellitus. JACS AU 2023; 3:657-681. [PMID: 37006768 PMCID: PMC10052274 DOI: 10.1021/jacsau.2c00572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 06/19/2023]
Abstract
Beyond the well-explored proposition of protein aggregation or amyloidosis as the central event in amyloidogenic diseases like Alzheimer's Disease (AD), and Type 2 Diabetes Mellitus (T2Dm); there are alternative hypotheses, now becoming increasingly evident, which suggest that the small biomolecules like redox noninnocent metals (Fe, Cu, Zn, etc.) and cofactors (Heme) have a definite influence in the onset and extent of such degenerative maladies. Dyshomeostasis of these components remains as one of the common features in both AD and T2Dm etiology. Recent advances in this course reveal that the metal/cofactor-peptide interactions and covalent binding can alarmingly enhance and modify the toxic reactivities, oxidize vital biomolecules, significantly contribute to the oxidative stress leading to cell apoptosis, and may precede the amyloid fibrils formation by altering their native folds. This perspective highlights this aspect of amyloidogenic pathology which revolves around the impact of the metals and cofactors in the pathogenic courses of AD and T2Dm including the active site environments, altered reactivities, and the probable mechanisms involving some highly reactive intermediates as well. It also discusses some in vitro metal chelation or heme sequestration strategies which might serve as a possible remedy. These findings might open up a new paradigm in our conventional understanding of amyloidogenic diseases. Moreover, the interaction of the active sites with small molecules elucidates potential biochemical reactivities that can inspire designing of drug candidates for such pathologies.
Collapse
Affiliation(s)
- Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick
Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick
Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
5
|
Nath AK, Roy M, Dey C, Dey A, Dey SG. Spin state dependent peroxidase activity of heme bound amyloid β peptides relevant to Alzheimer's disease. Chem Sci 2022; 13:14305-14319. [PMID: 36545147 PMCID: PMC9749105 DOI: 10.1039/d2sc05008k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
The colocalization of heme rich deposits in the senile plaque of Aβ in the cerebral cortex of the Alzheimer's disease (AD) brain along with altered heme homeostasis and heme deficiency symptoms in AD patients has invoked the association of heme in AD pathology. Heme bound Aβ complexes, depending on the concentration of the complex or peptide to heme ratio, exhibit an equilibrium between a high-spin mono-His bound peroxidase-type active site and a low-spin bis-His bound cytochrome b type active site. The high-spin heme-Aβ complex shows higher peroxidase activity than free heme, where compound I is the reactive oxidant. It is also capable of oxidizing neurotransmitters like serotonin in the presence of peroxide, owing to the formation of compound I. The low-spin bis-His heme-Aβ complex on the other hand shows enhanced peroxidase activity relative to high-spin heme-Aβ. It reacts with H2O2 to produce two stable intermediates, compound 0 and compound I, which are characterized by absorption, EPR and resonance Raman spectroscopy. The stability of compound I of low-spin heme-Aβ is accountable for its enhanced peroxidase activity and oxidation of the neurotransmitter serotonin. The effect of the second sphere Tyr10 residue of Aβ on the formation and stability of the intermediates of low-spin heme-Aβ has also been investigated. The higher stability of compound I for low-spin heme-Aβ is likely due to H-bonding interactions involving Tyr10 in the distal pocket.
Collapse
Affiliation(s)
- Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Chinmay Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| |
Collapse
|
6
|
Lukas J, Družeta I, Kühl T. Comparative studies of soluble and immobilized Fe(III) heme-peptide complexes as alternative heterogeneous biocatalysts. Biol Chem 2022; 403:1099-1105. [PMID: 36257922 DOI: 10.1515/hsz-2022-0199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/06/2022] [Indexed: 11/15/2022]
Abstract
Fe(III) heme is known to possess low catalytic activity when exposed to hydrogen peroxide and a reducing substrate. Efficient non-covalently linked Fe(III) heme-peptide complexes may represent suitable alternatives as a new group of green catalysts. Here, we evaluated a set of heme-peptide complexes by determination of their peroxidase-like activity and the kinetics of the catalytic conversion in both, the soluble and the immobilized state. We show the impact of peptide length on binding of the peptides to Fe(III) heme and the catalytic activity. Immobilization of the peptide onto a polymer support maintains the catalytic performance of the Fe(III) heme-peptide complex. This study thus opens up a new perspective with regard to the development of heterogeneous biocatalysts with a peroxidase-like activity.
Collapse
Affiliation(s)
- Joey Lukas
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Ivona Družeta
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| |
Collapse
|
7
|
Abstract
Amyloids are protein aggregates bearing a highly ordered cross β structural motif, which may be functional but are mostly pathogenic. Their formation, deposition in tissues and consequent organ dysfunction is the central event in amyloidogenic diseases. Such protein aggregation may be brought about by conformational changes, and much attention has been directed toward factors like metal binding, post-translational modifications, mutations of protein etc., which eventually affect the reactivity and cytotoxicity of the associated proteins. Over the past decade, a global effort from different groups working on these misfolded/unfolded proteins/peptides has revealed that the amino acid residues in the second coordination sphere of the active sites of amyloidogenic proteins/peptides cause changes in H-bonding pattern or protein-protein interactions, which dramatically alter the structure and reactivity of these proteins/peptides. These second sphere effects not only determine the binding of transition metals and cofactors, which define the pathology of some of these diseases, but also change the mechanism of redox reactions catalyzed by these proteins/peptides and form the basis of oxidative damage associated with these amyloidogenic diseases. The present review seeks to discuss such second sphere modifications and their ramifications in the etiopathology of some representative amyloidogenic diseases like Alzheimer's disease (AD), type 2 diabetes mellitus (T2Dm), Parkinson's disease (PD), Huntington's disease (HD), and prion diseases.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
8
|
Nath AK, Dey SG. Simultaneous Binding of Heme and Cu to Amyloid β Peptides: Active Site and Reactivities. Dalton Trans 2022; 51:4986-4999. [DOI: 10.1039/d2dt00162d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amyloid imbalance and Aβ plaque formation are key histopathological features of Alzheimer’s disease (AD). These amyloid plaques observed in post-mortem AD brains have been found to contain increased levels of...
Collapse
|
9
|
g-C3N4-heme bound to amyloid β peptides: In-situ generation of the secondary co-reactant for dual-enhanced electrochemiluminescence assay of amyloid β detection. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Bacchella C, Brewster JT, Bähring S, Dell’Acqua S, Root HD, Thiabaud GD, Reuther JF, Monzani E, Sessler JL, Casella L. Condition-Dependent Coordination and Peroxidase Activity of Hemin-Aβ Complexes. Molecules 2020; 25:E5044. [PMID: 33143109 PMCID: PMC7662341 DOI: 10.3390/molecules25215044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 01/07/2023] Open
Abstract
The peroxidase activity of hemin-peptide complexes remains a potential factor in oxidative damage relevant to neurodegeneration. Here, we present the effect of temperature, ionic strength, and pH relevant to pathophysiological conditions on the dynamic equilibrium between high-spin and low-spin hemin-Aβ40 constructs. This influence on peroxidase activity was also demonstrated using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and dopamine (DA) oxidation rate analyses with increasing ratios of Aβ16 and Aβ40 (up to 100 equivalents). Interaction and reactivity studies of aggregated Aβ40-hemin revealed enhanced peroxidase activity versus hemin alone. Comparison of the results obtained using Aβ16 and Aβ40 amyloid beta peptides revealed marked differences and provide insight into the potential effects of hemin-Aβ on neurological disease progression.
Collapse
Affiliation(s)
- Chiara Bacchella
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (C.B.); (S.D.); (E.M.)
| | - James T. Brewster
- Department of Chemistry, The University of Texas at Austin, 105 East 24th, Street-Stop A5300, Austin, TX 78712-1224, USA; (J.T.B.II); (H.D.R.); (G.D.T.); (J.F.R.)
| | - Steffen Bähring
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Simone Dell’Acqua
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (C.B.); (S.D.); (E.M.)
| | - Harrison D. Root
- Department of Chemistry, The University of Texas at Austin, 105 East 24th, Street-Stop A5300, Austin, TX 78712-1224, USA; (J.T.B.II); (H.D.R.); (G.D.T.); (J.F.R.)
| | - Gregory D. Thiabaud
- Department of Chemistry, The University of Texas at Austin, 105 East 24th, Street-Stop A5300, Austin, TX 78712-1224, USA; (J.T.B.II); (H.D.R.); (G.D.T.); (J.F.R.)
| | - James F. Reuther
- Department of Chemistry, The University of Texas at Austin, 105 East 24th, Street-Stop A5300, Austin, TX 78712-1224, USA; (J.T.B.II); (H.D.R.); (G.D.T.); (J.F.R.)
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Enrico Monzani
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (C.B.); (S.D.); (E.M.)
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th, Street-Stop A5300, Austin, TX 78712-1224, USA; (J.T.B.II); (H.D.R.); (G.D.T.); (J.F.R.)
| | - Luigi Casella
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (C.B.); (S.D.); (E.M.)
| |
Collapse
|
11
|
Metal complexes that bind to the amyloid-β peptide of relevance to Alzheimer’s disease. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213255
expr 886172045 + 931245952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
12
|
Gomes LM, Bataglioli JC, Storr T. Metal complexes that bind to the amyloid-β peptide of relevance to Alzheimer’s disease. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Roy M, Pal I, Nath AK, Dey SG. Peroxidase activity of heme bound amyloid β peptides associated with Alzheimer's disease. Chem Commun (Camb) 2020; 56:4505-4518. [PMID: 32297620 DOI: 10.1039/c9cc09758a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The amyloid cascade hypothesis attributes the neurodegeneration observed in Alzheimer's disease (AD) to the deposition of the amyloid β (Aβ) peptide into plaques and fibrils in the AD brain. The metal ion hypothesis which implicates several metal ions, viz. Zn2+, Cu2+ and Fe3+, in the AD pathology on account of their abnormal accumulation in the Aβ plaques along with an overall dyshomeostasis of these metals in the AD brain was proposed a while back. Metal ion chelators and ionophores, put forward as possible drug candidates for AD, are yet to succeed in clinical trials. Heme, which is widely distributed in the mammalian body as the prosthetic group of several important proteins and enzymes, has been thought to be associated with AD by virtue of its colocalization in the Aβ plaques along with the similarity of several heme deficiency symptoms with those of AD and most importantly, due to its ability to bind Aβ. This feature article illustrates the active site environment of heme-Aβ which resembles those of peroxidases. It also discusses the peroxidase activity of heme-Aβ, its ability to effect oxidative degradation of neurotransmitters like serotonin and also the identification of the highly reactive high-valent intermediate, compound I. The effect of second sphere residues on the formation and peroxidase activity of heme-Aβ along with the generation and decay of compound I is highlighted throughout the article. The reactivities of heme bound Aβ peptides give an alternative theory to understand the possible cause of this disease.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | | | | | | |
Collapse
|
14
|
Syllwasschy BF, Beck MS, Družeta I, Hopp MT, Ramoji A, Neugebauer U, Nozinovic S, Menche D, Willbold D, Ohlenschläger O, Kühl T, Imhof D. High-affinity binding and catalytic activity of His/Tyr-based sequences: Extending heme-regulatory motifs beyond CP. Biochim Biophys Acta Gen Subj 2020; 1864:129603. [PMID: 32234408 DOI: 10.1016/j.bbagen.2020.129603] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/22/2020] [Accepted: 03/19/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND & MOTIVATION Peptides and proteins can interact with heme through His, Tyr, or Cys in heme-regulatory motifs (HRMs). The Cys-Pro dipeptide is a well investigated HRM, but for His and Tyr such a distinct motif is currently unknown. In addition, many heme-peptide complexes, such as heme-amyloid β, can display a peroxidase-like activity, albeit there is little understanding of how the local primary and secondary coordination environment influences catalytic activity. We thus systematically evaluated a series of His- and Tyr-based peptides to identify sequence features for high-affinity heme binding and their impact on the catalytic activity of heme. METHODS We employed solid-phase peptide synthesis to produce 58 nonapeptides, which were investigated by UV/vis, resonance Raman, and 2D NMR spectroscopy. A chromogenic assay was used to determine the catalytic activity of the heme-peptide complexes. RESULTS Heme-binding affinity and binding mode were found to be dependent on the coordinating amino acid and spacer length between multiple potential coordination sites in a motif. In particular, HXH and HXXXH motifs showed strong heme binding. Analysis of the peroxidase-like activity revealed that some of these peptides and also HXXXY motifs enhance the catalytic activity of heme significantly. CONCLUSIONS We identify HXH, HXXXH, and HXXXY as potential new HRMs with functional properties. Several peptides displayed a strikingly high peroxidase-like activity. GENERAL SIGNIFICANCE The identification of HRMs allows to discover yet unknown heme-regulated proteins, and consequently, enhances our current understanding of pathologies involving labile heme.
Collapse
Affiliation(s)
- Benjamin Franz Syllwasschy
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Maximilian Steve Beck
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Ivona Družeta
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Marie-Thérèse Hopp
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
| | - Anuradha Ramoji
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747 Jena, Germany; Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Ute Neugebauer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747 Jena, Germany; Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Senada Nozinovic
- Institute for Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany
| | - Dirk Menche
- Institute for Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany
| | - Dieter Willbold
- Jülich Research Centre, Institute of Complex Systems - Structural Biochemistry (ICS-6), 52425 Jülich, Germany; Institute of Physical Biology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | | | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany.
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany.
| |
Collapse
|