1
|
Üngör Ö, Sanchez S, Ozvat TM, Zadrozny JM. Asymmetry-enhanced 59Co NMR thermometry in Co(iii) complexes. Inorg Chem Front 2023; 10:7064-7072. [PMID: 38021440 PMCID: PMC10660387 DOI: 10.1039/d3qi01641b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
Design strategies for molecular thermometers by magnetic resonance are essential for enabling new noninvasive means of temperature mapping for disease diagnoses and treatments. Herein we demonstrate a new design strategy for thermometry based on chemical control of the vibrational partition function. To do so, we performed variable-temperature 59Co NMR investigations of four air-stable Co(iii) complexes: Co(accp)3 (1), Co(bzac)3 (2), Co(tBu2-acac)3 (3), and Co(acac)3 (4) (accp = 2-acetylcyclopentanonate; bzac = benzoylacetonate; tBu2-acac = 2,2,6,6-tetramethyl-3,5-heptanedionate and acac = acetylacetonate). We discovered 59Co chemical shift temperature sensitivity (Δδ/ΔT) values of 3.50(2), 3.39(3), 1.63(3), and 2.83(1) ppm °C-1 for 1-4, respectively, at 100 mM concentration. The values observed for 1 and 2 are new records for sensitivity for low-spin Co(iii) complexes. We propose that the observed heightened sensitivities for 1 and 2 are intimately tied to the asymmetry of the accp and bzac ligands versus the acac and tBu2-acac ligands, which enables a larger number of low-energy Raman-active vibrational modes to contribute to the observed Δδ/ΔT values.
Collapse
Affiliation(s)
- Ökten Üngör
- Department of Chemistry, Colorado State University Fort Collins Colorado 80523 USA
| | - Stephanie Sanchez
- Department of Chemistry, Colorado State University Fort Collins Colorado 80523 USA
| | - Tyler M Ozvat
- Department of Chemistry, Colorado State University Fort Collins Colorado 80523 USA
| | - Joseph M Zadrozny
- Department of Chemistry, Colorado State University Fort Collins Colorado 80523 USA
| |
Collapse
|
2
|
Campanella AJ, Üngör Ö, Zadrozny JM. Quantum Mimicry With Inorganic Chemistry. COMMENT INORG CHEM 2023; 44:11-53. [PMID: 38515928 PMCID: PMC10954259 DOI: 10.1080/02603594.2023.2173588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Quantum objects, such as atoms, spins, and subatomic particles, have important properties due to their unique physical properties that could be useful for many different applications, ranging from quantum information processing to magnetic resonance imaging. Molecular species also exhibit quantum properties, and these properties are fundamentally tunable by synthetic design, unlike ions isolated in a quadrupolar trap, for example. In this comment, we collect multiple, distinct, scientific efforts into an emergent field that is devoted to designing molecules that mimic the quantum properties of objects like trapped atoms or defects in solids. Mimicry is endemic in inorganic chemistry and featured heavily in the research interests of groups across the world. We describe a new field of using inorganic chemistry to design molecules that mimic the quantum properties (e.g. the lifetime of spin superpositions, or the resonant frequencies thereof) of other quantum objects, "quantum mimicry." In this comment, we describe the philosophical design strategies and recent exciting results from application of these strategies.
Collapse
Affiliation(s)
- Anthony J. Campanella
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA, Address: 200 W. Lake St, Campus Delivery 1872, Fort Collins, CO 80523, USA
| | - Ökten Üngör
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA, Address: 200 W. Lake St, Campus Delivery 1872, Fort Collins, CO 80523, USA
| | - Joseph M. Zadrozny
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA, Address: 200 W. Lake St, Campus Delivery 1872, Fort Collins, CO 80523, USA
| |
Collapse
|
3
|
De S, Flambard A, Xu B, Chamoreau L, Gontard G, Lisnard L, Li Y, Boillot M, Lescouëzec R. Molecular Magnetic Materials Based on {Co
III
(Tp*)(CN)
3
}
−
Cyanidometallate: Combined Magnetic, Structural and
59
Co NMR Study. Chemistry 2022; 28:e202200783. [PMID: 35716039 PMCID: PMC9543823 DOI: 10.1002/chem.202200783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/09/2022]
Abstract
The cyanidocobaltate of formula fac‐PPh4[CoIII(Me2Tp)(CN)3] ⋅ CH3CN (1) has been used as a metalloligand to prepare polynuclear magnetic complexes (Me2Tp=hydrotris(3,5‐dimethylpyrazol‐1‐yl)borate). The association of 1 with in situ prepared [FeII(bik)2(MeCN)2](OTf)2 (bik=bis(1‐methylimidazol‐2‐yl)ketone) leads to a molecular square of formula {[CoIII{(Me2Tp)}(CN)3]2[FeII(bik)2]2}(OTf)2 ⋅ 4MeCN ⋅ 2H2O (2), whereas the self‐assembly of 1 with preformed cluster [CoII2(OH2)(piv)4(Hpiv)4] in MeCN leads to the two‐dimensional network of formula {[CoII2(piv)3]2[CoIII(Me2Tp)(CN)3]2 ⋅ 2CH3CN}∞ (3). These compounds were structurally characterized via single crystal X‐ray analysis and their spectroscopic (FTIR, UV‐Vis and 59Co NMR) properties and magnetic behaviours were also investigated. Bulk magnetic susceptibility measurements reveal that 1 is diamagnetic and 3 is paramagnetic throughout the explored temperature range, whereas 2 exhibits sharp spin transition centered at ca. 292 K. Compound 2 also exhibits photomagnetic effects at low temperature, selective light irradiations allowing to promote reversibly and repeatedly low‐spin⇔high‐spin conversion. Besides, the diamagnetic nature of the Co(III) building block allows us studying these compounds by means of 59Co NMR spectroscopy. Herein, a 59Co chemical shift has been used as a magnetic probe to corroborate experimental magnetic data obtained from bulk magnetic susceptibility measurements. An influence of the magnetic state of the neighbouring atoms is observed on the 59Co NMR signals. Moreover, for the very first time, 59Co NMR technique has been successfully introduced to investigate molecular materials with distinct magnetic properties.
Collapse
Affiliation(s)
- Siddhartha De
- Institut Parisien de Chimie Moléculaire UMR CNRS 8232 Sorbonne Université, CNRS 75005 Paris France
| | - Alexandrine Flambard
- Institut Parisien de Chimie Moléculaire UMR CNRS 8232 Sorbonne Université, CNRS 75005 Paris France
| | - Buqin Xu
- Institut Parisien de Chimie Moléculaire UMR CNRS 8232 Sorbonne Université, CNRS 75005 Paris France
| | - Lise‐Marie Chamoreau
- Institut Parisien de Chimie Moléculaire UMR CNRS 8232 Sorbonne Université, CNRS 75005 Paris France
| | - Geoffrey Gontard
- Institut Parisien de Chimie Moléculaire UMR CNRS 8232 Sorbonne Université, CNRS 75005 Paris France
| | - Laurent Lisnard
- Institut Parisien de Chimie Moléculaire UMR CNRS 8232 Sorbonne Université, CNRS 75005 Paris France
| | - Yanling Li
- Institut Parisien de Chimie Moléculaire UMR CNRS 8232 Sorbonne Université, CNRS 75005 Paris France
| | - Marie‐Laure Boillot
- Institut Chimie Moléculaire et Matériaux d'Orsay UMR CNRS 8182 Université Paris-Saclay, CNRS 91405 Orsay France
| | - Rodrigue Lescouëzec
- Institut Parisien de Chimie Moléculaire UMR CNRS 8232 Sorbonne Université, CNRS 75005 Paris France
| |
Collapse
|
4
|
Ozvat TM, Rappé AK, Zadrozny JM. Isotopomeric Elucidation of the Mechanism of Temperature Sensitivity in 59Co NMR Molecular Thermometers. Inorg Chem 2022; 61:778-785. [PMID: 34962806 PMCID: PMC9531048 DOI: 10.1021/acs.inorgchem.1c03326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Understanding the mechanisms governing temperature-dependent magnetic resonance properties is essential for enabling thermometry via magnetic resonance imaging. Herein we harness a new molecular design strategy for thermometry─that of effective mass engineering via deuteration in the first coordination shell─to reveal the mechanistic origin of 59Co chemical shift thermometry. Exposure of [Co(en)3]3+ (1; en = ethylenediamine) and [Co(diNOsar)]3+ (2; diNOsar = dinitrosarcophagine) to mixtures of H2O and D2O produces distributions of [Co(en)3]3+-dn (n = 0-12) and [Co(diNOsar)]3+-dn (n = 0-6) isotopomers all resolvable by 59Co NMR. Variable-temperature 59Co NMR analyses reveal a temperature dependence of the 59Co chemical shift, Δδ/ΔT, on deuteration of the N-donor atoms. For 1, deuteration amplifies Δδ/ΔT by 0.07 ppm/°C. Increasing degrees of deuteration yield an opposing influence on 2, diminishing Δδ/ΔT by -0.07 ppm/°C. Solution-phase Raman spectroscopy in the low-frequency 200-600 cm-1 regime reveals a red shift of Raman-active Co-N6 vibrational modes by deuteration. Analysis of the normal vibrational modes shows that Raman modes produce the largest variation in 59Co δ. Finally, partition function analysis of the Raman-active modes shows that increased populations of Raman modes predict greater Δδ/ΔT, representing new experimental insight into the thermometry mechanism.
Collapse
Affiliation(s)
- Tyler M. Ozvat
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Anthony K. Rappé
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Joseph M. Zadrozny
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
5
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Abstract
Studying the correlation between temperature-driven molecular structure and nuclear spin dynamics is essential to understanding fundamental design principles for thermometric nuclear magnetic resonance spin-based probes. Herein, we study the impact of progressively encapsulating ligands on temperature-dependent 59Co T 1 (spin-lattice) and T 2 (spin-spin) relaxation times in a set of Co(III) complexes: K3[Co(CN)6] (1); [Co(NH3)6]Cl3 (2); [Co(en)3]Cl3 (3), en = ethylenediamine); [Co(tn)3]Cl3 (4), tn = trimethylenediamine); [Co(tame)2]Cl3 (5), tame = triaminomethylethane); and [Co(dinosar)]Cl3 (6), dinosar = dinitrosarcophagine). Measurements indicate that 59Co T 1 and T 2 increase with temperature for 1-6 between 10 and 60 °C, with the greatest ΔT 1/ΔT and ΔT 2/ΔT temperature sensitivities found for 4 and 3, 5.3(3)%T 1/°C and 6(1)%T 2/°C, respectively. Temperature-dependent T 2* (dephasing time) analyses were also made, revealing the highest ΔT 2*/ΔT sensitivities in structures of greatest encapsulation, as high as 4.64%T 2*/°C for 6. Calculations of the temperature-dependent quadrupolar coupling parameter, Δe 2 qQ/ΔT, enable insight into the origins of the relative ΔT 1/ΔT values. These results suggest tunable quadrupolar coupling interactions as novel design principles for enhancing temperature sensitivity in nuclear spin-based probes.
Collapse
|
7
|
Tm-DOTA as responsive relaxation and shift probe for NMR local temperature monitoring at high magnetic fields. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120153] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Ozvat TM, Sterbinsky GE, Campanella AJ, Rappé AK, Zadrozny JM. EXAFS investigations of temperature-dependent structure in cobalt-59 molecular NMR thermometers. Dalton Trans 2020; 49:16380-16385. [PMID: 32478347 DOI: 10.1039/d0dt01391a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobalt-59 nuclei are known for extremely thermally sensitive chemical shifts (δ), which in the long term could yield novel magnetic resonance thermometers for bioimaging applications. In this manuscript, we apply extended X-ray absorption fine structure (EXAFS) spectroscopy for the first time to probe the exact variations in physical structure that produce the exceptional thermal sensitivity of the 59Co NMR chemical shift. We apply this spectroscopic technique to five Co(iii) complexes: [Co(NH3)6]Cl3 (1), [Co(en)3]Cl3 (2) (en = ethylenediamine), [Co(tn)3]Cl3 (3) (tn = trimethylenediamine), [Co(tame)2]Cl3 (4) (tame = 1,1,1-tris(aminomethyl)ethane), and [Co(diNOsar)]Cl3 (5) (diNOsar = dinitrosarcophagine). The solution-phase EXAFS data reveal increasing Co-N bond distances for these aqueous complexes over a ∼50 °C temperature window, expanding by Δr(Co-N) = 0.0256(6) Å, 0.0020(5) Å, 0.0084(5) Å, 0.0006(5) Å, and 0.0075(6) Å for 1-5, respectively. Computational analyses of the structural changes reveal that increased connectivity between the donor atoms encourages complex structural variations. These results imply that rich temperature-dependent structural variations define 59Co NMR thermometry in macrocyclic complexes.
Collapse
Affiliation(s)
- Tyler M Ozvat
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | |
Collapse
|
9
|
Antušek A, Repisky M. NMR absolute shielding scales and nuclear magnetic dipole moments of transition metal nuclei. Phys Chem Chem Phys 2020; 22:7065-7076. [DOI: 10.1039/d0cp00115e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports new, accurate nuclear magnetic dipole moments for transition metal nuclei where the long-standing systematic error due to obsolete diamagnetic correction has been eliminated by ab initio calculations of NMR shielding constants.
Collapse
Affiliation(s)
- Andrej Antušek
- Slovak University of Technology
- ATRI
- Faculty of Materials Science and Technology in Trnava
- 917 24 Trnava
- Slovak Republic
| | - Michal Repisky
- Hylleraas Centre for Quantum Molecular Sciences
- Department of Chemistry
- UiT – The Arctic University of Norway
- N-9037 Tromsø
- Norway
| |
Collapse
|