1
|
Chen C, Chen Y, Han Z, Huang Y, Wang Y, Tao X, Wang L, Chen X, Long R, Yang Y, Zhu W, Zhou B. Switchable Regioselective C-H Activation/Annulation of Acrylamides with Alkynes for the Synthesis of 2-Pyridones. CHEMSUSCHEM 2024; 17:e202400066. [PMID: 38656829 DOI: 10.1002/cssc.202400066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
A catalyst-based switchable regioselective C-H activation/annulation of acrylamides with propargyl carbonates has been developed, delivering C5 or C6 alkenyl substituted 2-pyridones. This robust protocol proceeds with a broad substrate scope and good functional group tolerance under redox-neutral reaction conditions. More significantly, this reaction is highly effective with previously challenging unsymmetrical alkynes, including unbiased alkyl-alkyl substituted alkynes, with perfect and switchable regioselectivity. Additionally, mechanistic studies and DFT calculations were performed to shed light on the switchable regioselectivity.
Collapse
Affiliation(s)
- Chao Chen
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Yanni Chen
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Zijian Han
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yujie Huang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujiao Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiuyu Tao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Lan Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Xiangli Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ruikai Long
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yaxi Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Weiliang Zhu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Bing Zhou
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| |
Collapse
|
2
|
Huang L, Wang Q, Fu P, Sun Y, Xu J, Browne DL, Huang J. Extended Quinolizinium-Fused Corannulene Derivatives: Synthesis and Properties. JACS AU 2024; 4:1623-1631. [PMID: 38665663 PMCID: PMC11040561 DOI: 10.1021/jacsau.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 04/28/2024]
Abstract
Reported here is the design and synthesis of a novel class of extended quinolizinium-fused corannulene derivatives with curved geometry. These intriguing molecules were synthesized through a rationally designed synthetic strategy, utilizing double Skraup-Doebner-Von Miller quinoline synthesis and a rhodium-catalyzed C-H activation/annulation (CHAA) as the key steps. Single-crystal X-ray analysis revealed a bowl depth of 1.28-1.50 Å and a unique "windmill-like" shape packing of 12a(2PF6-) due to the curvature and incorporation of two aminium ions. All of the newly reported curved salts exhibit green to orange fluorescence with enhanced quantum yields (Φf = 9-13%) and improved dispersibility compared to the pristine corannulene (Φf = 1%). The reduced optical energy gap and lower energy frontier orbital found by doping extended corannulene systems with nitrogen cations was investigated by UV-vis, fluorescence, and theoretical calculations. Electrochemical measurements reveal a greater electron-accepting behavior compared with that of their pyridine analogues. The successful synthesis, isolation, and evaluation of these curved salts provide a fresh perspective and opportunity for the design of cationic nitrogen-doped curved aromatic hydrocarbon-based materials.
Collapse
Affiliation(s)
- Lin Huang
- School
of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin
Key Laboratory for Modern Drug Delivery & High-Efficiency, School
of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Qing Wang
- School
of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
- National
Institute of Biological Sciences, Beijing, No. 7 Science Park Road, Zhongguancun Life Science
Park, Beijing 102206, China
| | - Peng Fu
- School
of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin
Key Laboratory for Modern Drug Delivery & High-Efficiency, School
of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuzhu Sun
- School
of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin
Key Laboratory for Modern Drug Delivery & High-Efficiency, School
of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jun Xu
- School
of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Duncan L. Browne
- Department
of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London (UCL), 29-39 Brunswick Square, Bloomsbury, London WC1N
1AX, U.K.
| | - Jianhui Huang
- School
of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin
Key Laboratory for Modern Drug Delivery & High-Efficiency, School
of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
3
|
Zhang Q, Li Y, Chen Y, Jiang J, Liu Y, Luo J, Gao Y, Huo Y, Chen Q, Li X. Ru(II)-Catalyzed Divergent C-H Alkynylation Cascade with Bifunctional α-Alcohol Haloalkynes. Org Lett 2024; 26:2186-2191. [PMID: 38452270 DOI: 10.1021/acs.orglett.4c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Native functionality directed the C-H activation cascade to enable rapid construction of molecular complexity, featuring step-economy and synthetic efficiency. Herein, by exploiting bifunctional α-alcohol haloalkynes, we developed Ru(II)-catalyzed carboxylic acid, amine, and amide assisted divergent C-H alkynylation and annulation cascade, affording polyfunctional heterocycles. Significantly, a bilateral aryl C-H polycyclization cascade of azobenzenes was achieved using the versatile haloalkynes.
Collapse
Affiliation(s)
- Qiaoya Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yinling Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yabo Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiahua Jiang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiye Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
4
|
Bauri S, Ramachandran A, Rit A. (Benz)imidazo[1,2-a]quinolinium Salts: Access via Unprecedented Regiospecific non-AAIPEX Strategy and Study of Their Tunable Properties. Chemistry 2024; 30:e202303744. [PMID: 38226763 DOI: 10.1002/chem.202303744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
An unprecedented non-AAIPEX protocol has been developed to access diverse monosubstituted cationic polycyclic heteroaromatic compounds (cPHACs) from the readily available azolium salts and phenacyl bromides via Ru(II)-catalyzed tandem annulation cum aromatization. This atom-economic protocol executes a range of intermediate steps e. g. double C-H activation, nucleophilic addition, annulation, and dehydration cum aromatization in one-pot manner under the generation of H2O as the sole byproduct. Moreover, the systematic tunability of photo-physical and electrochemical properties of these new class of cPHACs can be authenticated from the DFT calculated frontier molecular orbital energies that might be beneficial for their potential applications in optoelectronics and DNA intercalation.
Collapse
Affiliation(s)
- Somnath Bauri
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Arya Ramachandran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
5
|
Mondal S, Giri CK, Baidya M. Enaminone-directed ruthenium(II)-catalyzed C-H activation and annulation of arenes with diazonaphthoquinones for polycyclic benzocoumarins. Chem Commun (Camb) 2023; 59:13187-13190. [PMID: 37850468 DOI: 10.1039/d3cc03999d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The weakly coordinating enaminone functionality has been leveraged for a C-H bond activation strategy under ruthenium catalysis and employed in the regioselective annulative coupling of arenes with diazonaphthoquinones, offering polycyclic benzocoumarins in very high yields. The enaminone motif plays a dual role and the protocol operates through a Ru(II)/Ru(IV) catalytic pathway which is amenable to the diversification of various pharmacophore-coupled substrates.
Collapse
Affiliation(s)
- Sudeshna Mondal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Chandan Kumar Giri
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| |
Collapse
|
6
|
Nagtilak PJ, Mane MV, Prasad S, Cavallo L, Tantillo DJ, Kapur M. Merging Rh-Catalyzed C-H Functionalization and Cascade Cyclization to Enable Propargylic Alcohols as Three-Carbon Synthons. Chemistry 2023; 29:e202203055. [PMID: 36197081 DOI: 10.1002/chem.202203055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 11/07/2022]
Abstract
Reported herein is a reactivity of propargyl alcohols as "Three-Carbon Synthons" in a Rh(III)-catalyzed C-H functionalization of acetanilides, leading to the synthesis of core structures of isocryptolepine, γ-carbolines, dihydrochromeno[2,3-b]indoles, and diindolylmethanes (DIM) derivatives. The transformation involves a rhodium(III)-catalyzed C-H functionalization and heteroannulation to yield indoles followed by a cascade cyclization with both external and internal nucleophiles to afford diverse products. The role of the hydroxy group, the key function of the silver additive, the origin of the reverse regioselectivity and the rate-determining step, are rationalized in conformity with the combination of experimental, noncovalent interaction analysis and DFT studies. This protocol is endowed with several salient features, including one-pot multistep cascade approach, exclusive regioselectivity, good functional group tolerance and synthesis of variety of molecular frameworks.
Collapse
Affiliation(s)
- Prajyot Jayadev Nagtilak
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Manoj V Mane
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnatak, 562112, India
| | - Supreeth Prasad
- Department of Chemistry, University of California-Davis, Davis, California, 95616, USA
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, California, 95616, USA
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
7
|
Liu B, Rao J, Liu W, Gao Y, Huo Y, Chen Q, Li X. Ligand-assisted olefin-switched divergent oxidative Heck cascade with molecular oxygen enabled by self-assembled imines. Org Chem Front 2023. [DOI: 10.1039/d3qo00316g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Divergent oxidative Heck reaction has proven to be reliable for the rapid construction of molecular complexity, while olefins switched the outcome that remained underexplored.
Collapse
Affiliation(s)
- Bairong Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jianhang Rao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Weibing Liu
- College of Chemical Engineering, Guangdong University of Petrochemical Technology, 2 Guandu Road, Maoming 525000, P. R. China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
8
|
Zhang Y, Wang H, Bai J, Liu Q, Cui J, Huang Y. Rh(III)-Catalyzed Synthesis of Amino-isocoumarins with N-Functionalized Cyclic Carbonates via C-H/O-H Annulation. Org Lett 2022; 24:9222-9227. [PMID: 36562178 DOI: 10.1021/acs.orglett.2c03739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A practical method to access amino-isocoumarins catalyzed by a Rh(III) complex through redox-neutral C-H/O-H annulation has been disclosed. The use of N-functionalized cyclic carbonates is crucial to facilitate the catalytic turnover, and a broad spectrum of amino-isocoumarin derivatives were prepared with satisfactory yields. Amino-isocoumarin estrone conjugated with a selenocyano functionality was identified to be nearly four times as active as the marketed drug abiraterone against T47D cancer cells.
Collapse
Affiliation(s)
- Yuanfei Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hao Wang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Jintong Bai
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Qiuxia Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Jianguo Cui
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Yanmin Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| |
Collapse
|
9
|
Zhang X, Liu G, Peng Y, li H, Zhou Y. Trifluoromethylated Indolopyranones through Regioselective Annulation of Indole Carboxylic Acids with Unsymmetric Internal Trifluoromethylated Alkynes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xingxing Zhang
- Huazhong University of Science and Technology Tongji Medical College School of Pharmacy CHINA
| | - Guangyuan Liu
- Huazhong University of Science and Technology Tongji Medical College School of Pharmacy CHINA
| | - Yiyuan Peng
- Jiangxi Normal University College of Chemistry and Chemical Engineering CHINA
| | - Hua li
- Huazhong University of Science and Technology Tongji Medical College School of Pharmacy CHINA
| | - Yirong Zhou
- Huazhong University of Science and Technology school of pharmacy No. 13 Hangkong Road 430030 wuhan CHINA
| |
Collapse
|
10
|
Shin S, Um K, Ko GH, Han GU, Kim D, Lee PH. Iridium(III)-Catalyzed Regioselective B(4)–H Allenylation of o-Carboranes by Ball Milling. Org Lett 2022; 24:3128-3133. [DOI: 10.1021/acs.orglett.2c00756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seohyun Shin
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyusik Um
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gi Hoon Ko
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gi Uk Han
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Phil Ho Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
11
|
Ali S, Rani A, Khan S. Manganese-Catalyzed C-H Functionalizations Driven via Weak Coordination: Recent Developments and Perspectives. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Enantioselective synthesis of indenopyrazolopyrazolones enabled by dual directing groups-assisted and rhodium(III)-catalyzed tandem C-H alkenylation/[3 + 2] stepwise cycloaddition. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Choi I, Messinis AM, Hou X, Ackermann L. A Strategy for Site‐ and Chemoselective C−H Alkenylation through Osmaelectrooxidative Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Isaac Choi
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Germany
| | - Antonis M. Messinis
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Germany
| | - Xiaoyan Hou
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Germany
| |
Collapse
|
14
|
Choi I, Messinis AM, Hou X, Ackermann L. A Strategy for Site- and Chemoselective C-H Alkenylation through Osmaelectrooxidative Catalysis. Angew Chem Int Ed Engl 2021; 60:27005-27012. [PMID: 34665924 PMCID: PMC9298884 DOI: 10.1002/anie.202110616] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Indexed: 01/06/2023]
Abstract
Herein, we disclose osmaelectrocatalyzed C-H activations that set the stage for electrooxidative alkyne annulations by benzoic acids. The osmium electrocatalysis enables site- and chemoselective electrooxidative C-H activations with unique levels of selectivity. The isolation of unprecedented osmium(0) and osmium(II) intermediates, along with crystallographic characterization and analyses by spectrometric and spectroscopic in operando techniques delineate a synergistic osmium redox catalyst regime. Detailed mechanistic studies revealed a facile C-H cleavage, which allows for an ample substrate scope, providing provide robust and user-friendly access to annulated heterocycles.
Collapse
Affiliation(s)
- Isaac Choi
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
| | - Antonis M. Messinis
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
| | - Xiaoyan Hou
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
| |
Collapse
|
15
|
Giri CK, Dana S, Baidya M. Ruthenium(II)-catalyzed C-H activation and (4+2) annulation of aromatic hydroxamic acid esters with allylic amides. Chem Commun (Camb) 2021; 57:10536-10539. [PMID: 34553196 DOI: 10.1039/d1cc04422b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A (4+2) annulation under Ru(II)-catalysis is reported using aromatic hydroxamic acid esters as the oxidizing directing group and allylic amides as unactivated olefin coupling partners, delivering a wide variety of aminomethyl isoquinolinones in good to excellent yields. This annulation is distinctive as allylic congeners typically result in allylation and not the annulation. Late-stage derivatization of a bioactive synthetic bile acid has been showcased.
Collapse
Affiliation(s)
- Chandan Kumar Giri
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| |
Collapse
|
16
|
Ghosh S, Khandelia T, Patel BK. Solvent-Switched Manganese(I)-Catalyzed Regiodivergent Distal vs Proximal C-H Alkylation of Imidazopyridine with Maleimide. Org Lett 2021; 23:7370-7375. [PMID: 34543041 DOI: 10.1021/acs.orglett.1c02536] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A sustainable Mn(I)-catalyzed exclusive solvent-dependent functionalization of imidazopyridine with maleimide via an electrophilic metalation at the distal (in 2,2,2-trifluoroethanol (TFE)) and chelation assisted at the proximal (in tetrahydrofuran (THF)) has been developed. The strategy was successfully applied to the drug Zolimidine and a broad range of substrates, thereby reflecting the method's versatility.
Collapse
Affiliation(s)
- Subhendu Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Tamanna Khandelia
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| |
Collapse
|
17
|
Desai B, Patel M, Dholakiya BZ, Rana S, Naveen T. Recent advances in directed sp 2 C-H functionalization towards the synthesis of N-heterocycles and O-heterocycles. Chem Commun (Camb) 2021; 57:8699-8725. [PMID: 34397068 DOI: 10.1039/d1cc02176a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heterocyclic compounds are widely present in the core structures of several natural products, pharmaceuticals and agrochemicals, and thus great efforts have been devoted to their synthesis in a mild and simpler way. In the past decade, remarkable progress has been made in the field of heterocycle synthesis by employing C-H functionalization as an emerging synthetic strategy. As a complement to previous protocols, transition metal catalyzed C-H functionalization of arenes using various directing groups has recently emerged as a powerful tool to create different classes of heterocycles. This review is mainly focussed on the recent key progress made in the field of the synthesis of N,O-heterocycles from olefins and allenes by using nitrogen based and oxidizing directing groups.
Collapse
Affiliation(s)
- Bhargav Desai
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | | | | | | | | |
Collapse
|
18
|
Dong Z, Li P, Li X, Liu B. Rh(
III
)‐Catalyzed Diverse C—H Functionalization of Iminopyridinium Ylides. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100203] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zhenzhen Dong
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Pengfei Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Xingwei Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Bingxian Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
19
|
Zhou Y, Hua R. Synthesis of 1-Benzyl-, 1-Alkoxyl-, and 1-Aminoisoquinolines via Rhodium(III)-Catalyzed Aryl C-H Activation and Alkyne Annulation. J Org Chem 2021; 86:8862-8872. [PMID: 34164989 DOI: 10.1021/acs.joc.1c00786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One-pot syntheses of 1-benzyl-, 1-alkoxyl-, and 1-alkylamino- isoquinolines through automatic directing group (DGauto)-assisted, rhodium(III)-catalyzed aryl C-H activation and annulation with internal alkynes were developed. The reactions affording 1-benzylisoquinolines involve a cascade oximation of diarylacetylenes with hydroxylamine, forming aryl benzyl ketone oxime, and oxime-assisted rhodium(III)-catalyzed aryl C-H activation and followed annulation with another molecule of diarylacetylene in a one-pot manner. The formation of 1-alkoxyl/amino isoquinolines includes the addition of nucleophilic alcohols or amines to aryl nitriles, imine-assisted rhodium-catalyzed aryl C-H activation, and subsequent alkyne annulation.
Collapse
Affiliation(s)
- Yiming Zhou
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ruimao Hua
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Kumar S, Nair AM, Volla CMR. Ru(II)-catalyzed allenylation and sequential annulation of N-tosylbenzamides with propargyl alcohols. Chem Commun (Camb) 2021; 57:6280-6283. [PMID: 34075961 DOI: 10.1039/d1cc01768c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We hereby report Ru(ii)-catalyzed C(sp2)-H allenylation of N-tosylbenzamides to access multi-substituted allenylamides. Furthermore, the allenylamides were converted to the corresponding isoquinolone derivatives via base mediated annulation. The current protocol features low catalyst loading, mild reaction conditions, high functional group compatibility and desired scalability. The unique functionality of the afforded allenes allowed further transformations to expand the practicality of the protocol.
Collapse
Affiliation(s)
- Shreemoyee Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Akshay M Nair
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
21
|
Weis E, Hayes MA, Johansson MJ, Martín-Matute B. Iridium-catalyzed C-H methylation and d 3-methylation of benzoic acids with application to late-stage functionalizations. iScience 2021; 24:102467. [PMID: 34027322 PMCID: PMC8122115 DOI: 10.1016/j.isci.2021.102467] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/24/2021] [Accepted: 04/21/2021] [Indexed: 12/31/2022] Open
Abstract
Late-stage functionalization (LSF) has over the past years emerged as a powerful approach in the drug discovery process. At its best, it allows for rapid access to new analogues from a single drug-like molecule, bypassing the need for de novo synthesis. To be successful, methods able to tolerate the diverse functional groups present in drug-like molecules that perform under mild conditions are required. C-H methylation is of particular interest due to the magic methyl effect in medicinal chemistry. Herein we report an iridium-catalyzed carboxylate-directed ortho C-H methylation and d 3-methylation of benzoic acids. The method uses commercially available reagents and precatalyst and requires no inert atmosphere or exclusion of moisture. Substrates bearing electron-rich and electron-poor groups were successfully methylated, including compounds with competing directing/coordinating groups. The method was also applied to the LSF of several marketed drugs, forming analogues with increased metabolic stability compared with the parent drug.
Collapse
Affiliation(s)
- Erik Weis
- Department of Organic Chemistry, Stockholm University, Stockholm 106 91, Sweden
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Martin A. Hayes
- Hit Discovery, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Magnus J. Johansson
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Belén Martín-Matute
- Department of Organic Chemistry, Stockholm University, Stockholm 106 91, Sweden
| |
Collapse
|
22
|
Li Y, Fang F, Zhou J, Li J, Wang R, Liu H, Zhou Y. Rhodium‐Catalyzed C−H Activation/Annulation Cascade of Aryl Oximes and Propargyl Alcohols to Isoquinoline
N
‐Oxides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuan Li
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 People's Republic of China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Feifei Fang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Jianhui Zhou
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Jiyuan Li
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Run Wang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Hong Liu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 People's Republic of China
| | - Yu Zhou
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 People's Republic of China
| |
Collapse
|
23
|
Mondal S, Pinkert T, Daniliuc CG, Glorius F. Regioselektive und redox‐neutrale Cp*Ir
III
‐katalysierte allylische C‐H‐Alkinylierung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shobhan Mondal
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Tobias Pinkert
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Frank Glorius
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
24
|
Yang QL, Jia HW, Liu Y, Xing YK, Ma RC, Wang MM, Qu GR, Mei TS, Guo HM. Electrooxidative Iridium-Catalyzed Regioselective Annulation of Benzoic Acids with Internal Alkynes. Org Lett 2021; 23:1209-1215. [PMID: 33538167 DOI: 10.1021/acs.orglett.0c04168] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrochemically driven, Cp*Ir(III)-catalyzed regioselective annulative couplings of benzoic acids with alkynes have been established herein. The combination of iridium catalyst and electricity not only circumvents the need for stoichiometric amount of chemical oxidant, but also ensures broad reaction compatibility with a wide array of sterically and electronically diverse substrates. This electrochemical approach represents a sustainable strategy as an ideal alternative and supplement to the oxidative annulations methodology to be engaged in the synthesis of isocoumarin derivatives.
Collapse
Affiliation(s)
- Qi-Liang Yang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hong-Wei Jia
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ying Liu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yi-Kang Xing
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Rui-Cong Ma
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Man-Man Wang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Gui-Rong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
25
|
Mondal S, Pinkert T, Daniliuc CG, Glorius F. Regioselective and Redox‐Neutral Cp*Ir
III
‐Catalyzed Allylic C−H Alkynylation. Angew Chem Int Ed Engl 2021; 60:5688-5692. [DOI: 10.1002/anie.202015249] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/22/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Shobhan Mondal
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Tobias Pinkert
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Frank Glorius
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
26
|
Li J, Fang F, Wang R, Li Y, Xu B, Liu H, Zhou Y. A Rh(iii)-catalyzed C–H activation/regiospecific annulation cascade of benzoic acids with propargyl acetates to unusual 3-alkylidene-isochromanones. Org Chem Front 2021. [DOI: 10.1039/d1qo00387a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a new approach to synthesize isochromanones with benzoic acids and propargyl acetates, which introducing an unusual exocyclic C–C double bond at the 3-position with high regioselectivity and moderate to excellent yields.
Collapse
Affiliation(s)
- Jiyuan Li
- Department of Chemistry
- Shanghai University
- Shanghai 200444
- China
- State Key Laboratory of Drug Research
| | - Feifei Fang
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Run Wang
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Yuan Li
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Bin Xu
- Department of Chemistry
- Shanghai University
- Shanghai 200444
- China
| | - Hong Liu
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Yu Zhou
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| |
Collapse
|
27
|
Sikari R, Chakraborty G, Guin AK, Paul ND. Nickel-Catalyzed [4 + 2] Annulation of Nitriles and Benzylamines by C-H/N-H Activation. J Org Chem 2021; 86:279-290. [PMID: 33314935 DOI: 10.1021/acs.joc.0c02069] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nickel-catalyzed [4 + 2] annulation of benzylamines and nitriles via C-H/N-H bond activation, providing straightforward atom-economic access to a wide variety of multisubstituted quinazolines, is reported. Mechanistic investigation revealed that the in situ formed amidines from the coupling of benzylamines and nitriles direct the nickel catalyst to activate the ortho-C-H bond of the phenyl ring of the benzylamine.
Collapse
Affiliation(s)
- Rina Sikari
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Gargi Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
28
|
Sato K, Ogiwara Y, Sakai N. Palladium-Catalyzed [5 + 1] Annulation of Salicylic Acid Derivatives and Propargylic Carbonates. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kazuya Sato
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yohei Ogiwara
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Norio Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
29
|
Kumar GR, Rajesh M, Lin S, Liu S. Propargylic Alcohols as Coupling Partners in Transition‐Metal‐Catalyzed Arene C−H Activation. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000896] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gadi Ranjith Kumar
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 511436 People's Republic of China
| | - Manda Rajesh
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Shuimu Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 511436 People's Republic of China
| | - Shouping Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou 511436 People's Republic of China
| |
Collapse
|
30
|
Jiang B, Jia J, Sun Y, Wang Y, Zeng J, Bu X, Shi L, Sun X, Yang X. γ-Carboline synthesis enabled by Rh(iii)-catalysed regioselective C-H annulation. Chem Commun (Camb) 2020; 56:13389-13392. [PMID: 33034593 DOI: 10.1039/d0cc04740f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A redox-neutral Rh(iii)-catalyzed C-H annulation of indolyl oximes was developed. Relying on the use of various alkynyl silanes as the terminal alkyne surrogates, the reaction exhibited a reverse regioselectivity, thus giving an exclusive and easy way for the synthesis of a wide range of substituent free γ-carbolines at C3 position with high efficiency. Deuterium-labelling experiments and kinetic analysis have preliminarily shed light on the working mode of this catalytic system.
Collapse
Affiliation(s)
- Bo Jiang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mihara G, Ghosh K, Nishii Y, Miura M. Concise Synthesis of Isocoumarins through Rh-Catalyzed Direct Vinylene Annulation: Scope and Mechanistic Insight. Org Lett 2020; 22:5706-5711. [PMID: 32638595 DOI: 10.1021/acs.orglett.0c02112] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transition-metal-catalyzed activation of inert C-H bonds and subsequent C-C bond formation have emerged as powerful synthetic tools for the synthesis of elaborate cyclic molecules. In this report, we introduce an efficient synthetic method of 3,4-unsubstituted isocoumarins adopting an electron-deficient CpERh complex as the catalyst. The use of vinylene carbonate as a vinylene transfer reagent enables the direct construction of isocoumarins from readily available benzoic acids, without any external oxidants as well as bases. The reaction mechanism is evaluated by computational analysis to find an unprecedented "rhodium shift" event within the catalytic cycle.
Collapse
Affiliation(s)
- Gen Mihara
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koushik Ghosh
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuji Nishii
- Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
32
|
Zhou K, Geng J, Wang D, Zhang J, Zhao Y. An Indirect Strategy for Trifluoromethylation via an Iridium Catalyst: Approach to Generate Isocoumarin Skeletons in Bioactive Molecules. Org Lett 2020; 22:5109-5114. [PMID: 32551685 DOI: 10.1021/acs.orglett.0c01700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3-Bromo-1,1,1-trifluoroacetone was first disclosed as an effective indirect trifluoromethylation reagent to construct the important 3-trifluoromethyl isocoumarin skeleton. The reaction proceeds through a ligand-promoted, iridium-catalyzed ortho-selective C-H alkylation of benzoic acid and an intermolecular cyclization reaction promoted by silver acetate. A wide range of 3-trifluoromethyl isocoumarins can be easily obtained in moderate to good yields. Importantly, the isocoumarin skeleton can be easily formed in bioactive compounds, highlighting the importance of this reaction.
Collapse
Affiliation(s)
- Kehan Zhou
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, P. R. China.,Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jingyao Geng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Dongjie Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jingyu Zhang
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, P. R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
33
|
Li T, Yang Z, Song Z, Chauvin R, Cui X. Rhodium(III)-Catalyzed [4+3] Annulation of N-Aryl-pyrazolidinones and Propargylic Acetates: Access to Benzo[c][1,2]diazepines. Org Lett 2020; 22:4078-4082. [DOI: 10.1021/acs.orglett.0c01139] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tingfang Li
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Zi Yang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Zhenyu Song
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Remi Chauvin
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
- LCC-CNRS, Université de Toulouse, UPS, 205 route de Narbonne, 31077 Toulouse, France
| | - Xiuling Cui
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| |
Collapse
|
34
|
Baek Y, Cheong K, Ko GH, Han GU, Han SH, Kim D, Lee K, Lee PH. Iridium-Catalyzed Cyclative Indenylation and Dienylation through Sequential B(4)–C Bond Formation, Cyclization, and Elimination from o-Carboranes and Propargyl Alcohols. J Am Chem Soc 2020; 142:9890-9895. [DOI: 10.1021/jacs.0c02121] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yonghyeon Baek
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kiun Cheong
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gi Hoon Ko
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gi Uk Han
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sang Hoon Han
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Kooyeon Lee
- Department of Bio-Health Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Phil Ho Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
35
|
Son J, Maeng C, Lee PH. Synthetic Methods of Isocoumarins and Phosphaisocoumarins through CH Activation. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.11996] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jeong‐Yu Son
- Department of ChemistryKangwon National University Chuncheon 24341 Republic of Korea
| | - Chanyoung Maeng
- Department of ChemistryKangwon National University Chuncheon 24341 Republic of Korea
| | - Phil Ho Lee
- Department of ChemistryKangwon National University Chuncheon 24341 Republic of Korea
| |
Collapse
|
36
|
Kumar A, Prabhu KR. Rhodium(III)-Catalyzed C-H Activation: A Cascade Approach for the Regioselective Synthesis of Fused Heterocyclic Lactone Scaffolds. J Org Chem 2020; 85:3548-3559. [PMID: 31994394 DOI: 10.1021/acs.joc.9b03266] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A Rh(III)-catalyzed cascade C-H activation; regioselective [4 + 2] oxidative annulation; and lactonization of aromatic acids, anhydrides, and acrylic acid derivatives with 4-hydroxy-2-alkynoates have been disclosed. This strategy leads to fused heterocyclic lactone scaffolds in a single step with moderate functional group tolerance and excellent site selectivity. Besides, in one step, an antipode of the cephalosol intermediate natural product that contains a tricyclic isocoumarin framework has been synthesized.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| | - Kandikere Ramaiah Prabhu
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| |
Collapse
|
37
|
Banerjee S, Vivek Kumar S, Punniyamurthy T. Site-Selective Rh-Catalyzed C-7 and C-6 Dual C–H Functionalization of Indolines: Synthesis of Functionalized Pyrrolocarbazoles. J Org Chem 2020; 85:2793-2805. [DOI: 10.1021/acs.joc.9b03180] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sonbidya Banerjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sundaravel Vivek Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | |
Collapse
|
38
|
Zhang L, Chen J, Chen X, Zheng X, Zhou J, Zhong T, Chen Z, Yang YF, Jiang X, She YB, Yu C. Rh(iii)-catalyzed, hydrazine-directed C–H functionalization with 1-alkynylcyclobutanols: a new strategy for 1H-indazoles. Chem Commun (Camb) 2020; 56:7415-7418. [PMID: 32484463 DOI: 10.1039/c9cc08884a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rh(iii)-catalyzed coupling of phenylhydrazines with 1-alkynylcyclobutanols was realized through a hydrazine-directed C–H functionalization and [4+1] annulation pathway.
Collapse
Affiliation(s)
- Lei Zhang
- College of pharmaceutical sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Junyu Chen
- College of pharmaceutical sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Xiahe Chen
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Xiangyun Zheng
- College of pharmaceutical sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Jian Zhou
- College of pharmaceutical sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Tianshuo Zhong
- College of pharmaceutical sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Zhiwei Chen
- College of pharmaceutical sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Yun-Fang Yang
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Xinpeng Jiang
- College of pharmaceutical sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Yuan-Bin She
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Chuanming Yu
- College of pharmaceutical sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| |
Collapse
|
39
|
Mei YL, Zhou W, Huo T, Zhou FS, Xue J, Zhang GY, Ren BT, Zhong C, Deng QH. Rhodium-Catalyzed Successive C-H Bond Functionalizations To Synthesize Complex Indenols Bearing a Benzofuran Unit. Org Lett 2019; 21:9598-9602. [PMID: 31763857 DOI: 10.1021/acs.orglett.9b03766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient rhodium-catalyzed redox-neutral annulations of N-phenoxyacetamides and ynones via successive double C-H bond activations has been developed. A series of novel and complex indenols bearing a benzofuran unit were generated with moderate to excellent regioselecetivities under mild conditions. Adding N-ethylcyclohexanamine (CyNHEt) could restrict the formation of the mono C-H bond activation byproduct, which is not the intermediate of the reaction demonstrated via the mechanistic investigations.
Collapse
Affiliation(s)
- Yan-Le Mei
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education , Shanghai Normal University , Shanghai 200234 , China
| | - Wei Zhou
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education , Shanghai Normal University , Shanghai 200234 , China
| | - Tao Huo
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education , Shanghai Normal University , Shanghai 200234 , China
| | - Fang-Shuai Zhou
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education , Shanghai Normal University , Shanghai 200234 , China
| | - Jing Xue
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education , Shanghai Normal University , Shanghai 200234 , China
| | - Guang-Yi Zhang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education , Shanghai Normal University , Shanghai 200234 , China
| | - Bing-Tao Ren
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education , Shanghai Normal University , Shanghai 200234 , China
| | - Cheng Zhong
- College of Chemistry and Molecular Sciences , Wuhan University , 199 Bayi Road , Wuhan , Hubei 430072 , China
| | - Qing-Hai Deng
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education , Shanghai Normal University , Shanghai 200234 , China
| |
Collapse
|
40
|
Zhang LB, Zhu MH, Du WB, Ni SF, Wen LR, Li M. Silver-promoted regioselective [4+2] annulation reaction of indoles with alkenes to construct dihydropyrimidoindolone scaffolds. Chem Commun (Camb) 2019; 55:14383-14386. [DOI: 10.1039/c9cc07098b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An AgI-promoted regioselective [4+2] annulation reaction of indoles with alkenes has been established.
Collapse
Affiliation(s)
- Lin-Bao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Ming-Hui Zhu
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Wu-Bo Du
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Shao-Fei Ni
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| |
Collapse
|