1
|
Xu D, Li X, Cui Z, Cao L, Cheng HG, Zhou Q. Practical synthesis of C-aryl glycosides via redox-neutral Borono-Catellani reaction. Chem Commun (Camb) 2025; 61:736-739. [PMID: 39663863 DOI: 10.1039/d4cc05665e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Herein, we describe a practical Borono-Catellani strategy for the efficient synthesis of C-aryl glycosides, with readily available arylboronic esters and glycosyl chlorides as the building blocks. It features mild reaction conditions, excellent diastereoselectivities, and good functional group tolerance. A diverse array of highly decorated C-(hetero)aryl glycosides are obtained in a convergent and redox-neutral manner.
Collapse
Affiliation(s)
- Dekang Xu
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences and The Institute for Advanced Studies and TaiKang Center for Life and Medical Sciences, Wuhan University, 430072, Wuhan, China.
| | - Xia Li
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences and The Institute for Advanced Studies and TaiKang Center for Life and Medical Sciences, Wuhan University, 430072, Wuhan, China.
| | - Ziyang Cui
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences and The Institute for Advanced Studies and TaiKang Center for Life and Medical Sciences, Wuhan University, 430072, Wuhan, China.
| | - Liming Cao
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences and The Institute for Advanced Studies and TaiKang Center for Life and Medical Sciences, Wuhan University, 430072, Wuhan, China.
| | - Hong-Gang Cheng
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences and The Institute for Advanced Studies and TaiKang Center for Life and Medical Sciences, Wuhan University, 430072, Wuhan, China.
| | - Qianghui Zhou
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences and The Institute for Advanced Studies and TaiKang Center for Life and Medical Sciences, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
2
|
Zhang BS, Jia WY, Wang YM, Oliveira JCA, Warratz S, Zhang ZQ, Gou XY, Liang YM, Wang XC, Quan ZJ, Ackermann L. Template Synthesis to Solve the Unreachable Ortho C-H Functionalization Reaction of Aryl Iodide. J Org Chem 2023; 88:16539-16546. [PMID: 37947111 DOI: 10.1021/acs.joc.3c02014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
This report describes the use of a simple Pd/NBE catalytic system to achieve ortho C-H oxylation and phosphonylation and other functionalizations of aryl iodide through templated conversion reactions. Dimethylamine is introduced in the ortho-site of aryl iodide through C-H amination, and aryl dimethylamine is quickly converted to methyl quaternary ammonium salt precipitation. Methyl quaternary ammonium salt avoids Hofmann elimination in subsequent functionalization. This method solves various ortho functionalization reactions of aryl iodide that have not been achieved for a long time in the field of Pd/NBE chemistry indirectly.
Collapse
Affiliation(s)
- Bo-Sheng Zhang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- Institut für Organische und Biomolekulare Chemie and Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, Göttingen 37077, Germany
| | - Wan-Yuan Jia
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yi-Ming Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - João C A Oliveira
- Institut für Organische und Biomolekulare Chemie and Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, Göttingen 37077, Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie and Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, Göttingen 37077, Germany
| | - Ze-Qiang Zhang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xue-Ya Gou
- Institut für Organische und Biomolekulare Chemie and Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, Göttingen 37077, Germany
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xi-Cun Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zheng-Jun Quan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, Göttingen 37077, Germany
| |
Collapse
|
3
|
Liu X, Zhou Y, Qi X, Li R, Liu P, Dong G. Palladium/Norbornene-Catalyzed Direct Vicinal Di-Carbo-Functionalization of Indoles: Reaction Development and Mechanistic Study. Angew Chem Int Ed Engl 2023; 62:e202310697. [PMID: 37672173 PMCID: PMC10591888 DOI: 10.1002/anie.202310697] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/07/2023]
Abstract
Methods that can simultaneously install multiple different functional groups to heteroarenes via C-H functionalizations are valuable for complex molecule synthesis, which, however, remain challenging to realize. Here we report the development of vicinal di-carbo-functionalization of indoles in a site- and regioselective manner, enabled by the palladium/norbornene (Pd/NBE) cooperative catalysis. The reaction is initiated by the Pd(II)-mediated C3-metalation and specifically promoted by the C1-substituted NBEs. The mild, scalable, and robust reaction conditions allow for a good substrate scope and excellent functional group tolerance. The resulting C2-arylated C3-alkenylated indoles can be converted to diverse synthetically useful scaffolds. The combined experimental and computational mechanistic study reveals the unique role of the C1-substituted NBE in accelerating the turnover-limiting oxidative addition step.
Collapse
Affiliation(s)
- Xin Liu
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Yun Zhou
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Xiaotian Qi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Renhe Li
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Recent progress on Catellani reaction. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
5
|
O-Benzoylhydroxylamines: A Versatile Electrophilic Aminating Reagent for Transition Metal-Catalyzed C–N Bond-Forming Reactions. Top Curr Chem (Cham) 2023; 381:4. [DOI: 10.1007/s41061-022-00414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
|
6
|
Li R, Dong G. Redox‐Neutral Vicinal Difunctionalization of Five‐Membered Heteroarenes with Dual Electrophiles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Renhe Li
- Department of Chemistry University of Chicago Chicago IL 60637 USA
| | - Guangbin Dong
- Department of Chemistry University of Chicago Chicago IL 60637 USA
| |
Collapse
|
7
|
Li R, Dong G. Redox-Neutral Vicinal Difunctionalization of Five-Membered Heteroarenes with Dual Electrophiles. Angew Chem Int Ed Engl 2021; 60:26184-26191. [PMID: 34591355 DOI: 10.1002/anie.202110971] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/28/2021] [Indexed: 01/23/2023]
Abstract
A new reaction mode of palladium/norbornene (Pd/NBE) cooperative catalysis is reported involving the selective coupling of two different carbon-based electrophiles for vicinal double C-H functionalization of five-membered heteroarenes in a site-selective and redox-neutral manner. The key is to use alkynyl bromides as the second electrophile, which allows vicinal difunctionalization of a wide range of heteroarenes including pyrroles, thiophenes and furans at their C4 and C5 positions. One- or two-step tetrafunctionalizations of simple pyrrole and thiophene have also been realized. The C2-substituted NBEs prove most effective in these reactions, and the mechanistic exploration discloses the origin of the high selectivity of this transformation. Synthetic utility of this method has been exemplified in the concise preparations of thiophene-containing organic materials and a protein kinase inhibitor analogue. Preliminary success has also been achieved in a direct annulation event, using a tethered ketone as the second electrophile.
Collapse
Affiliation(s)
- Renhe Li
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
8
|
An Y, Li Y, Zhang XY, Zhang Z, Gou XY, Ding YN, Li Q, Liang YM. Palladium-Catalyzed C-H Amination/[2 + 3] or [2 + 4] Cyclization via C(sp 3 or sp 2)-H Activation. Org Lett 2021; 23:7961-7965. [PMID: 34612651 DOI: 10.1021/acs.orglett.1c02964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This report describes a palladium-catalyzed Catellani reaction consisting of amination/[2 + 3] or [2 + 4] cyclization via a carboxylate ligand-exchange strategy. This method effectively activates ortho-substituents that avoid a second C-H palladation. The scope of substrates was broad, o-methyl-substituted iodoarenes were applied to the reaction smoothly, and o-phenyl-substituted iodoarenes can also be obtained by this method. In terms of mechanism, density functional theory calculations proved the sequence of the key five-membered aryl-norbornene-palladacycle intermediate formation and C(sp3 or sp2)-H activation.
Collapse
Affiliation(s)
- Yang An
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xiao-Yan Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Ya Gou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Ya-Nan Ding
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Qiao Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
9
|
Liu X, Wang J, Dong G. Modular Entry to Functionalized Tetrahydrobenzo[ b]azepines via the Palladium/Norbornene Cooperative Catalysis Enabled by a C7-Modified Norbornene. J Am Chem Soc 2021; 143:9991-10004. [PMID: 34161077 PMCID: PMC9142336 DOI: 10.1021/jacs.1c04575] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tetrahydrobenzo[b]azepines (THBAs) are commonly found in many bioactive compounds; however, the modular preparation of functionalized THBAs remains challenging to date. Here, we report a straightforward method to synthesize THBAs directly from simple aryl iodides via palladium/norbornene (Pd/NBE) cooperative catalysis. Capitalizing on an olefin-tethered electrophilic amine reagent, an ortho amination followed by 7-exo-trig Heck cyclization furnishes the seven-membered heterocycle. To overcome the difficulty with ortho-unsubstituted aryl iodide substrates, we discovered a unique C7-bromo-substituted NBE (N1) to offer the desired reactivity and selectivity. In addition to THBAs, synthesis of other benzo-seven-membered ring compounds can also be promoted by N1. Combined experimental and computational studies show that the C7-bromo group in N1 plays an important and versatile role in this catalysis, including promoting β-carbon elimination, suppressing benzocyclobutene formation, and stabilizing reaction intermediates. The mechanistic insights gained could guide future catalyst design. The synthetic utility has been demonstrated in a streamlined synthesis of tolvaptan and forming diverse pharmaceutically relevant THBA derivatives. Finally, a complementary and general catalytic condition to access C6-substituted THBAs from ortho-substituted aryl iodides has also been developed.
Collapse
Affiliation(s)
- Xin Liu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Jianchun Wang
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
10
|
Sun M, Chen X, Feng Z, Deng G, Yang Y, Liang Y. A Catellani and retro-Diels–Alder strategy to access 1-amino phenanthrenes via ortho- and interannular C–H activation of 2-iodobiphenyls. Org Chem Front 2021. [DOI: 10.1039/d1qo01103k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A palladium-catalyzed three-component domino reaction for the construction of 1-amino phenanthrene derivatives by ortho- and interannular C–H activation of 2-iodobiphenyls has been developed.
Collapse
Affiliation(s)
- Mingjie Sun
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Xinyang Chen
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Zichao Feng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Guobo Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Yuan Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Yun Liang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
11
|
Cao L, Hua Y, Cheng HG, Zhou Q. C–H hetero-functionalization of arenes through palladacyclopentane-type intermediates. Org Chem Front 2021. [DOI: 10.1039/d0qo01350a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review article, we summarized recent advances in C–H hetero-functionalization of arenes through palladacyclopentane-type intermediates.
Collapse
Affiliation(s)
- Liming Cao
- Sauvage Center for Molecular Sciences
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- 430072 Wuhan
| | - Yu Hua
- Sauvage Center for Molecular Sciences
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- 430072 Wuhan
| | - Hong-Gang Cheng
- Sauvage Center for Molecular Sciences
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- 430072 Wuhan
| | - Qianghui Zhou
- Sauvage Center for Molecular Sciences
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- 430072 Wuhan
| |
Collapse
|
12
|
Thorat RA, Jain S, Sattar M, Yadav P, Mandhar Y, Kumar S. Synthesis of Chiral-Substituted 2-Aryl-ferrocenes by the Catellani Reaction. J Org Chem 2020; 85:14866-14878. [PMID: 33196212 DOI: 10.1021/acs.joc.0c01360] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A palladium-catalyzed and norbornene-mediated methodology has been developed for the synthesis of chiral 2-aryl-ferroceneamides from chiral 2-iodo-N,N-diisopropylferrocencarboxamide, iodoarenes, and alkenes using a JohnPhos ligand and potassium carbonate as a base in dimethylformamide at 105 °C. The developed three-component coupling protocol allows the compatibility of electron-withdrawing fluoro, chloro, ester, and nitro and electron-donating methyl, methoxy, dimethoxy, benzyl ether-substituted iodo-benzenes, other iodoarenes, such as iodo-naphthalene, heteroarenes, such as iodothiophene, and terminating substrates, such as methyl, ethyl, tert-butyl acrylates, and substituted styrenes with 2-iodo-N,N-diisopropylferrocencarboxamide. Furthermore, the developed three-component Catellani method proceeded with the retention of the configuration of the planar chiral ferrocene, which depends on the role of the participating carbon-iodine bond in ferrocene. Consequently, the developed protocol enabled the formation of densely substituted chiral 2-aryl ferroceneamides, exhibiting good to excellent enantioselectivity. The conversion of an ester of the synthesized chiral 2-aryl ferroceneamides has also been carried out to further accommodate the easily expendable acid and alcohol functionalities.
Collapse
Affiliation(s)
- Raviraj Ananda Thorat
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Saket Jain
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Moh Sattar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Prateek Yadav
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Yogesh Mandhar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
13
|
Li R, Dong G. Structurally Modified Norbornenes: A Key Factor to Modulate Reaction Selectivity in the Palladium/Norbornene Cooperative Catalysis. J Am Chem Soc 2020; 142:17859-17875. [PMID: 33016072 DOI: 10.1021/jacs.0c09193] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Palladium/norbornene (Pd/NBE) cooperative catalysis has received enormous attention and found numerous synthetic applications in the past two decades. Considering the critical roles that NBE plays in the catalytic cycle, the use of structurally modified NBEs (smNBEs), starting from 2015, has become an important approach to address limitations and modulate reaction selectivity in Pd/NBE catalysis. This Perspective highlights the development of three types of smNBEs: C1-substituted, C2-substituted, and C5-substituted or C5,C6-disubstituted NBEs, as well as their synthetic applications toward site-selective C-H functionalization. A focus is on the structure-activity relationship of smNBEs in these reactions, and rationales for using smNBEs in many cases have also been provided.
Collapse
Affiliation(s)
- Renhe Li
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
14
|
Yang S, Feng Y, Zhao S, Chen L, Li X, Zhang D, Liu H, Dong Y, Sun F. Palladium/Norbornene‐Catalyzed Sequential
ortho
‐Acylation and
ipso
‐Alkenylation with Carboxylic Acid: Access to Polysubstituted Aryl Ketones. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shimin Yang
- Affiliation a School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| | - Yunxia Feng
- Affiliation a School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| | - Shen Zhao
- Affiliation a School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| | - Lei Chen
- Affiliation a School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| | - Xinjin Li
- Affiliation a School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| | - Daopeng Zhang
- Affiliation a School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| | - Hui Liu
- Affiliation a School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| | - Yunhui Dong
- Affiliation a School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| | - Feng‐Gang Sun
- Affiliation a School of Chemistry and Chemical Engineering Shandong University of Technology 266 West Xincun Road Zibo 255049 People's Republic of China
| |
Collapse
|
15
|
Dutta U, Porey S, Pimparkar S, Mandal A, Grover J, Koodan A, Maiti D. para
‐Selective Arylation of Arenes: A Direct Route to Biaryls by Norbornene Relay Palladation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005664] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Uttam Dutta
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400 076 India
| | - Sandip Porey
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400 076 India
| | - Sandeep Pimparkar
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400 076 India
| | - Astam Mandal
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400 076 India
| | - Jagrit Grover
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400 076 India
| | - Adithyaraj Koodan
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400 076 India
| | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400 076 India
- Tokyo Tech World Research Hub Initiative (WRHI) Laboratory for Chemistry and Life Science Tokyo Institute of Technology Tokyo 152-8550 Japan
| |
Collapse
|
16
|
Dutta U, Porey S, Pimparkar S, Mandal A, Grover J, Koodan A, Maiti D. para-Selective Arylation of Arenes: A Direct Route to Biaryls by Norbornene Relay Palladation. Angew Chem Int Ed Engl 2020; 59:20831-20836. [PMID: 32754958 DOI: 10.1002/anie.202005664] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/29/2020] [Indexed: 12/12/2022]
Abstract
Biaryl compounds are extremely important structural motifs in natural products, biologically active components and pharmaceuticals. Selective synthesis of biaryls by distinguishing the subtle reactivity difference of distal arene C-H bonds are significantly challenging. Herein, we describe para-selective C-H arylation, which is acheived by a unique combination of a meta-directing group and norbornene as a transient mediator. Upon direct meta-C-H palladation, one-bond relay palladation occurs in presence of norbornene and subsequently para-C-H arylation is achieved for sulfonates, phosphonates and phenols bearing 2,6-disubstitution patterns. The protocol is amenable to electron-deficient aryl iodides. Multisubstituted arenes and phenols are obtained by postsynthetic modification of the products. The protocol allows the synthesis of hexa-substituted benzene by sequential selective distal C-H functionalization.
Collapse
Affiliation(s)
- Uttam Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
| | - Sandip Porey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
| | - Sandeep Pimparkar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
| | - Astam Mandal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
| | - Jagrit Grover
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
| | - Adithyaraj Koodan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India.,Tokyo Tech World Research Hub Initiative (WRHI) Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| |
Collapse
|
17
|
Chen C, Liu L, Sun W, Ding J, Zhu YP, Zhu B. Pd/NBE-catalyzed sequential carbamoylation/olefination of aryl iodides. Org Chem Front 2020. [DOI: 10.1039/d0qo00905a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We present a Pd/NBE-catalyzed sequential carbamoylation/olefination of aryl iodides under mild reaction conditions, which provide diverse 4-methylene-3,4-dihydro-1(2H)-isoquinolin-1-one analogues.
Collapse
Affiliation(s)
- Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Liying Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Wan Sun
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Jie Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Yan-Ping Zhu
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| |
Collapse
|
18
|
Gao Y, Li J, Bai S, Tu D, Yang C, Ye Z, Hu B, Qi X, Jiang C. Direct synthesis of annulated indoles through palladium-catalyzed double alkylations. Org Chem Front 2020. [DOI: 10.1039/d0qo00135j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A facile, one-step synthesis of annulated indoles from (N–H) indoles and dibromoalkanes was developed through a palladium-catalyzed double alkylation process.
Collapse
Affiliation(s)
- Yadong Gao
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
- National Institute of Biological Sciences
| | - Jianhua Li
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Songlin Bai
- National Institute of Biological Sciences
- Beijing 102206
- P. R. China
| | - Daoquan Tu
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Chao Yang
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
- National Institute of Biological Sciences
| | - Zhiwen Ye
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Bingcheng Hu
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Xiangbing Qi
- National Institute of Biological Sciences
- Beijing 102206
- P. R. China
- Tsinghua Institute of Multidisciplinary Biomedical Research
- Tsinghua University
| | - Chao Jiang
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| |
Collapse
|
19
|
Fu WC, Kwong FY. A denitrogenative palladium-catalyzed cascade for regioselective synthesis of fluorenes. Chem Sci 2019; 11:1411-1417. [PMID: 34123265 PMCID: PMC8148384 DOI: 10.1039/c9sc04062e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We herein report a denitrogenative palladium-catalyzed cascade for the modular and regioselective synthesis of polysubstituted fluorenes. Hydrazone facilitates the Pd(ii) to Pd(iv) oxidative addition in a Catellani pathway and is also the methylene synthon in the proposed reaction. Aryl iodides and 2-bromoarylaldehyde hydrazones undergo a norbornene-controlled tandem reaction sequence to give a broad scope of fluorenes in the presence of a palladium catalyst. The method described is scalable and adaptable to a three-component reaction with in situ generation of the hydrazone group. Preliminary mechanistic investigations have been conducted.
Collapse
Affiliation(s)
- Wai Chung Fu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin New Territories Hong Kong
| | - Fuk Yee Kwong
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin New Territories Hong Kong
| |
Collapse
|