1
|
Sun C, Lou M, Li Z, Cheng F, Li Z. Combining an Enhanced Polyphosphate Kinase-Driven UDP-Glucose Regeneration System with the Screening of Key Glycosyltransferases for Efficient In Vitro Synthesis of Nucleoside Disaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20557-20567. [PMID: 39250657 DOI: 10.1021/acs.jafc.4c05329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Nucleoside disaccharides are essential glycosides that naturally occur in specific living organisms. This study developed an enhanced UDP-glucose regeneration system to facilitate the in vitro multienzyme synthesis of nucleoside disaccharides by integrating it with nucleoside-specific glycosyltransferases. The system utilizes maltodextrin and polyphosphate as cost-effective substrates for UDP-glucose supply, catalyzed by α-glucan phosphorylase (αGP) and UDP-glucose pyrophosphorylase (UGP). To address the low activity of known polyphosphate kinases (PPKs) in the UDP phosphorylation reaction, a sequence-driven screening identified RhPPK with high activity against UDP (>1000 U/mg). Computational design further led to the creation of a double mutant with a 2566-fold increase in thermostability at 50 °C. The enhanced UDP-glucose regeneration system increased the production rate of nucleoside disaccharide synthesis by 25-fold. In addition, our UDP-glucose regeneration system is expected to be applied to other glycosyl transfer reactions.
Collapse
Affiliation(s)
- Chuanqi Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Miaozi Lou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zonglin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Feiyan Cheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
2
|
Petkowski JJ, Seager S, Bains W. Reasons why life on Earth rarely makes fluorine-containing compounds and their implications for the search for life beyond Earth. Sci Rep 2024; 14:15575. [PMID: 38971876 PMCID: PMC11227584 DOI: 10.1038/s41598-024-66265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
Life on Earth is known to rarely make fluorinated carbon compounds, as compared to other halocarbons. We quantify this rarity, based on our exhaustive natural products database curated from available literature. We build on explanations for the scarcity of fluorine chemistry in life on Earth, namely that the exclusion of the C-F bond stems from the unique physico-chemical properties of fluorine, predominantly its extreme electronegativity and strong hydration shell. We further show that the C-F bond is very hard to synthesize and when it is made by life its potential biological functions can be readily provided by alternative functional groups that are much less costly to incorporate into existing biochemistry. As a result, the overall evolutionary cost-to-benefit balance of incorporation of the C-F bond into the chemical repertoire of life is not favorable. We argue that the limitations of organofluorine chemistry are likely universal in that they do not exclusively apply to specifics of Earth's biochemistry. C-F bonds, therefore, will be rare in life beyond Earth no matter its chemical makeup.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370, Wroclaw, Poland.
- JJ Scientific, Warsaw, Mazowieckie, Poland.
| | - Sara Seager
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - William Bains
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- School of Physics & Astronomy, Cardiff University, 4 The Parade, Cardiff, CF24 3AA, UK
- Rufus Scientific, Melbourn, Royston, Herts, UK
| |
Collapse
|
3
|
Motter J, Benckendorff CMM, Westarp S, Sunde-Brown P, Neubauer P, Kurreck A, Miller GJ. Purine nucleoside antibiotics: recent synthetic advances harnessing chemistry and biology. Nat Prod Rep 2024; 41:873-884. [PMID: 38197414 PMCID: PMC11188666 DOI: 10.1039/d3np00051f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Indexed: 01/11/2024]
Abstract
Covering: 2019 to 2023Nucleoside analogues represent one of the most important classes of small molecule pharmaceuticals and their therapeutic development is successfully established within oncology and for the treatment of viral infections. However, there are currently no nucleoside analogues in clinical use for the management of bacterial infections. Despite this, a significant number of clinically recognised nucleoside analogues are known to possess some antibiotic activity, thereby establishing a potential source for new therapeutic discovery in this area. Furthermore, given the rise in antibiotic resistance, the discovery of new clinical candidates remains an urgent global priority and natural product-derived nucleoside analogues may also present a rich source of discovery space for new modalities. This Highlight, covering work published from 2019 to 2023, presents a current perspective surrounding the synthesis of natural purine nucleoside antibiotics. By amalgamating recent efforts from synthetic chemistry with advances in biosynthetic understanding and the use of recombinant enzymes, prospects towards different structural classes of purines are detailed.
Collapse
Affiliation(s)
- Jonas Motter
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, D-13355, Berlin, Germany
| | - Caecilie M M Benckendorff
- School of Chemical and Physical Sciences and Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| | - Sarah Westarp
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, D-13355, Berlin, Germany
- BioNukleo GmbH, Ackerstraße 76, 13355 Berlin, Germany.
| | - Peter Sunde-Brown
- School of Chemical and Physical Sciences and Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, D-13355, Berlin, Germany
| | - Anke Kurreck
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Ackerstraße 76, D-13355, Berlin, Germany
- BioNukleo GmbH, Ackerstraße 76, 13355 Berlin, Germany.
| | - Gavin J Miller
- School of Chemical and Physical Sciences and Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
4
|
Jiang Y, Yao M, Niu H, Wang W, He J, Qiao B, Li B, Dong M, Xiao W, Yuan Y. Enzyme Engineering Renders Chlorinase the Activity of Fluorinase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1203-1212. [PMID: 38179953 DOI: 10.1021/acs.jafc.3c08185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Organofluorine compounds have attracted substantial attention owing to their wide application in agrochemistry. Fluorinase (FlA) is a unique enzyme in nature that can incorporate fluorine into an organic molecule. Chlorinase (SalL) has a similar mechanism as fluorinase and can use chloride but not fluoride as a substrate to generate 5'-chloro-deoxyadenosine (5'-ClDA) from S-adenosyl-l-methionine (SAM). Therefore, identifying the features that lead to this selectivity for halide ions is highly important. Here, we engineered SalL to gain the function of FlA. We found that residue Tyr70 plays a key role in this conversion through alanine scanning. Site-saturation mutagenesis experiments demonstrated that Y70A/C/S/T/G all exhibited obvious fluorinase activity. The G131S mutant of SalL, in which the previously thought crucial residue Ser158 for fluoride binding in FlA was introduced, did not exhibit fluorination activity. Compared with the Y70T single mutant, the double mutant Y70T/W129F increased 5'-fluoro-5-deoxyadenosine (5'-FDA) production by 76%. The quantum mechanics (QM)/molecular mechanics (MM) calculations suggested that the lower energy barriers and shorter nucleophilic distance from F- to SAM in the mutants than in the SalL wild-type may contribute to the activity. Therefore, our study not only renders SalL the activity of FlA but also sheds light on the enzyme selectivity between fluoride versus chloride.
Collapse
Affiliation(s)
- Yixun Jiang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Mingdong Yao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Haoran Niu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenrui Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jiale He
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bingzhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Min Dong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, China
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Liu XL, Ji SJ, Cai ZJ. Palladium-catalyzed carbomonofluoromethylation of unactivated alkenes: rapid access to γ-monofluoromethyl carboxylic acid derivatives. Chem Commun (Camb) 2024; 60:730-733. [PMID: 38115711 DOI: 10.1039/d3cc05380f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Herein, we report a palladium-catalyzed regioselective carbomonofluoromethylation of unactivated alkenes. The reaction uses easily available fluorobis(phenylsulfonyl)methane (FBSM) as a fluoromethylating reagent, and proceeds smoothly with a wide variety of carbon electrophiles, including (hetero)aryl iodides, styrenyl iodides and TIPSBr. A range of remote γ-CH2F/CD2F carboxylic acid derivatives were constructed rapidly after a simple reductive desulfonylation step. The reaction features high regioselectivity, mild and simple reaction conditions and a broad substrate scope, and is easy to scale up.
Collapse
Affiliation(s)
- Xiao-Li Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China.
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China.
| | - Zhong-Jian Cai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
6
|
Feng X, Zhang Q, Clarke DJ, Deng H, O’Hagan D. 3'- O-β-Glucosyl-4',5'-didehydro-5'-deoxyadenosine Is a Natural Product of the Nucleocidin Producers Streptomyces virens and Streptomyces calvus. JOURNAL OF NATURAL PRODUCTS 2023; 86:2326-2332. [PMID: 37748016 PMCID: PMC10616807 DOI: 10.1021/acs.jnatprod.3c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 09/27/2023]
Abstract
3'-O-β-Glucosyl-4',5'-didehydro-5'-deoxyadenosine 13 is identified as a natural product of Streptomyces calvus and Streptomyces virens. It is also generated in vitro by direct β-glucosylation of 4',5'-didehydro-5'-deoxyadenosine 12 with the enzyme NucGT. The intact incorporation of oxygen-18 and deuterium isotopes from (±)[1-18O,1-2H2]-glycerol 14 into C-5' of nucleocidin 1 and its related metabolites precludes 3'-O-β-glucosyl-4',5'-didehydro-5'-deoxyadenosine 13 as a biosynthetic precursor to nucleocidin 1.
Collapse
Affiliation(s)
- Xuan Feng
- School
of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K.
| | - Qingzhi Zhang
- School
of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K.
| | - David J. Clarke
- EaStChem
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh, EH9 3FJ, U.K.
| | - Hai Deng
- Department
of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, U.K.
| | - David O’Hagan
- School
of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K.
| |
Collapse
|
7
|
Wojnowska M, Feng X, Chen Y, Deng H, O'Hagan D. Identification of Genes Essential for Fluorination and Sulfamylation within the Nucleocidin Gene Clusters of Streptomyces calvus and Streptomyces virens. Chembiochem 2023; 24:e202200684. [PMID: 36548247 PMCID: PMC10946740 DOI: 10.1002/cbic.202200684] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
The gene cluster in Streptomyces calvus associated with the biosynthesis of the fluoro- and sulfamyl-metabolite nucleocidin was interrogated by systematic gene knockouts. Out of the 26 gene deletions, most did not affect fluorometabolite production, nine abolished sulfamylation but not fluorination, and three precluded fluorination, but had no effect on sulfamylation. In addition to nucI, nucG, nucJ, nucK, nucL, nucN, nucO, nucQ and nucP, we identified two genes (nucW, nucA), belonging to a phosphoadenosine phosphosulfate (PAPS) gene cluster, as required for sulfamyl assembly. Three genes (orf(-3), orf2 and orf3) were found to be essential for fluorination, although the activities of their protein products are unknown. These genes as well as nucK, nucN, nucO and nucPNP, whose knockouts produced results differing from those described in a recent report, were also deleted in Streptomyces virens - with confirmatory outcomes. This genetic profile should inform biochemistry aimed at uncovering the enzymology behind nucleocidin biosynthesis.
Collapse
Affiliation(s)
- Marta Wojnowska
- School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| | - Xuan Feng
- School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| | - Yawen Chen
- School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| | - Hai Deng
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
| | - David O'Hagan
- School of ChemistryUniversity of St AndrewsSt AndrewsFifeKY16 9STUK
| |
Collapse
|
8
|
Lowe PT, O'Hagan D. 4'-Fluoro-nucleosides and nucleotides: from nucleocidin to an emerging class of therapeutics. Chem Soc Rev 2023; 52:248-276. [PMID: 36472161 DOI: 10.1039/d2cs00762b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The history and development of 4'-fluoro-nucleosides is discussed in this review. This is a class of nucleosides which have their origin in the discovery of the rare fluorine containing natural product nucleocidin. Nucleocidin contains a fluorine atom located at the 4'-position of its ribose ring. From its early isolation as an unexpected natural product, to its total synthesis and bioactivity assessment, nucleocidin has played a role in inspiring the exploration of 4'-fluoro-nucleosides as a privileged motif for nucleoside-based therapeutics.
Collapse
Affiliation(s)
- Phillip T Lowe
- School of Chemistry and Biomedical Sciences Research Centre, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK.
| | - David O'Hagan
- School of Chemistry and Biomedical Sciences Research Centre, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK.
| |
Collapse
|
9
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
10
|
Pasternak ARO, Balunas MJ, Zechel DL. Discovery of 3'- O-β-Glucosyltubercidin and the Nucleoside Specific Glycosyltransferase AvpGT through Genome Mining. ACS Chem Biol 2022; 17:3507-3514. [PMID: 36356213 DOI: 10.1021/acschembio.2c00707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A genome mining approach was used to identify a hybrid tubercidin-nucleocidin biosynthetic gene cluster (BGC) in Streptomyces sp. AVP053U2. Analysis of culture extracts by liquid chromatography-mass spectrometry revealed the presence of a glucosylated tubercidin derivative. A gene, avpGT, was identified within the hybrid cluster that has homology to the glucosyltransferase that is responsible for 3'-O-β-glucosylation of the fluorinated natural product nucleocidin. AvpGT was heterologously expressed and purified from Escherichia coli for in vitro characterization. AvpGT is active toward UDP-glucose and UDP-galactose as glycosyl donors and several nucleosides as acceptors. Kinetic analysis revealed that AvpGT is most specific for UDP-glucose [kcat/KMapp = (1.1 ± 0.3) × 105 M-1·s-1] as the glycosyl donor and tubercidin [kcat/KMapp = (5.3 ± 1.8) × 104 M-1·s-1] as the glycosyl acceptor. NMR spectroscopic analysis revealed the product of this reaction to be 3'-O-β-glucopyranosyl tubercidin. A sequence analysis of AvpGT reveals a family of nucleoside-specific GTs, which may be used as markers of BGCs that produce glycosylated nucleosides.
Collapse
Affiliation(s)
- A R Ola Pasternak
- Department of Chemistry, Queen's University, Kingston, K7L 3N6 Ontario, Canada
| | - Marcy J Balunas
- Departments of Microbiology and Immunology and Medicinal Chemistry, University of Michigan, Ann Arbor, 48109 Michigan, United States
| | - David L Zechel
- Department of Chemistry, Queen's University, Kingston, K7L 3N6 Ontario, Canada
| |
Collapse
|
11
|
Pasternak A, Bechthold A, Zechel DL. Identification of genes essential for sulfamate and fluorine incorporation during nucleocidin biosynthesis. Chembiochem 2022; 23:e202200140. [PMID: 35544615 DOI: 10.1002/cbic.202200140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/05/2022] [Indexed: 11/07/2022]
Abstract
Nucleocidin is an adenosine derivative containing 4'-fluoro and 5'-O-sulfamoyl substituents. In this study, nucleocidin biosynthesis is examined in two newly discovered producers, Streptomyces virens B-24331 and Streptomyces aureorectus B-24301, which produce nucleocidin and related derivatives at titres 30-fold greater than S. calvus . This enabled the identification of two new O -acetylated nucleocidin derivatives, and a potential glycosyl- O-acetyltransferase. Disruption of nucJ , nucG , and nucI , within S. virens B-24331, specifying a radical SAM / Fe-S dependent enzyme, sulfatase, and arylsulfatase, respectively, led to loss of 5'-O-sulfamoyl biosynthesis, but not fluoronucleoside production. Disruption of nucN , nucK , and nucO specifying an amidinotransferase, and two sulfotransferases respectively, led to loss of fluoronucleoside production. Identification of S. virens B-24331 as a genetically tractable and high producing strain sets the stage for understanding nucleocidin biosynthesis and highlights the utility of using 16S-RNA sequences to identify alternative producers of valuable compounds in the absence of genome sequence data.
Collapse
Affiliation(s)
- Aleksandra Pasternak
- Queen's University Faculty of Arts and Science, Chemistry, 90 Bader Lane, Chernoff Hall, K7L 3N6, Kingston, CANADA
| | - Andreas Bechthold
- Albert-Ludwigs-Universität Freiburg Fakultät für Chemie Pharmazie und Geowissenschaften: Albert-Ludwigs-Universitat Freiburg Fakultat fur Chemie und Pharmazie, Pharmaceutical Biology and Biotechnology, Stefan-Meier-Str. 19, 79104, Freiburg i. Br., GERMANY
| | - David L Zechel
- Queen's University, Department of Chemsitry, Chernoff Hall, K7L 3N6, Kingston, CANADA
| |
Collapse
|
12
|
Chen Y, Zhang Q, Feng X, Wojnowska M, O'Hagan D. Streptomyces aureorectus DSM 41692 and Streptomyces virens DSM 41465 are producers of the antibiotic nucleocidin and 4'-fluoroadenosine is identified as a co-product. Org Biomol Chem 2021; 19:10081-10084. [PMID: 34779476 DOI: 10.1039/d1ob01898a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Genome homology and the presence of a putative biosynthetic gene cluster identified Streptomyces aureorectus DSM 41692 and Streptomyces virens DSM 41465 as candidate producers of the antibiotic nucleocidin 1. Indeed when these bacterial strains were cultured in a medium supplemented with fluoride (4 mM) they each produced nucleocidin 1 and the previously identified 4'-fluoro-3'-O-β-glucosylated adenosine 2 and its sulfamylated derivative 3. In both of these cases 4'-fluoroadenosine 9 is also identified as a natural product although it has never been observed during fermentations of Streptomyces calvus, the original source of nucleocidin 1. The identity of 4'-fluoroadenosine 9 was confirmed by a total synthesis as well as by its in vitro enzymatic conversion to metabolite 2 using the glucosyl transferase enzyme, NucGT.
Collapse
Affiliation(s)
- Yawen Chen
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK.
| | - Qingzhi Zhang
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK.
| | - Xuan Feng
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK.
| | - Marta Wojnowska
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK.
| | - David O'Hagan
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK.
| |
Collapse
|
13
|
Cheng X, Ma L. Enzymatic synthesis of fluorinated compounds. Appl Microbiol Biotechnol 2021; 105:8033-8058. [PMID: 34625820 PMCID: PMC8500828 DOI: 10.1007/s00253-021-11608-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/31/2022]
Abstract
Fluorinated compounds are widely used in the fields of molecular imaging, pharmaceuticals, and materials. Fluorinated natural products in nature are rare, and the introduction of fluorine atoms into organic compound molecules can give these compounds new functions and make them have better performance. Therefore, the synthesis of fluorides has attracted more and more attention from biologists and chemists. Even so, achieving selective fluorination is still a huge challenge under mild conditions. In this review, the research progress of enzymatic synthesis of fluorinated compounds is summarized since 2015, including cytochrome P450 enzymes, aldolases, fluoroacetyl coenzyme A thioesterases, lipases, transaminases, reductive aminases, purine nucleoside phosphorylases, polyketide synthases, fluoroacetate dehalogenases, tyrosine phenol-lyases, glycosidases, fluorinases, and multienzyme system. Of all enzyme-catalyzed synthesis methods, the direct formation of the C-F bond by fluorinase is the most effective and promising method. The structure and catalytic mechanism of fluorinase are introduced to understand fluorobiochemistry. Furthermore, the distribution, applications, and future development trends of fluorinated compounds are also outlined. Hopefully, this review will help researchers to understand the significance of enzymatic methods for the synthesis of fluorinated compounds and find or create excellent fluoride synthase in future research.Key points• Fluorinated compounds are distributed in plants and microorganisms, and are used in imaging, medicine, materials science.• Enzyme catalysis is essential for the synthesis of fluorinated compounds.• The loop structure of fluorinase is the key to forming the C-F bond.
Collapse
Affiliation(s)
- Xinkuan Cheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, No. 29, Thirteenth Street, Binhai New District, Tianjin, 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, No. 29, Thirteenth Street, Binhai New District, Tianjin, 300457, China.
| |
Collapse
|
14
|
Wu YJ, Meanwell NA. Geminal Diheteroatomic Motifs: Some Applications of Acetals, Ketals, and Their Sulfur and Nitrogen Homologues in Medicinal Chemistry and Drug Design. J Med Chem 2021; 64:9786-9874. [PMID: 34213340 DOI: 10.1021/acs.jmedchem.1c00790] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acetals and ketals and their nitrogen and sulfur homologues are often considered to be unconventional and potentially problematic scaffolding elements or pharmacophores for the design of orally bioavailable drugs. This opinion is largely a function of the perception that such motifs might be chemically unstable under the acidic conditions of the stomach and upper gastrointestinal tract. However, even simple acetals and ketals, including acyclic molecules, can be sufficiently robust under acidic conditions to be fashioned into orally bioavailable drugs, and these structural elements are embedded in many effective therapeutic agents. The chemical stability of molecules incorporating geminal diheteroatomic motifs can be modulated by physicochemical design principles that include the judicious deployment of proximal electron-withdrawing substituents and conformational restriction. In this Perspective, we exemplify geminal diheteroatomic motifs that have been utilized in the discovery of orally bioavailable drugs or drug candidates against the backdrop of understanding their potential for chemical lability.
Collapse
Affiliation(s)
- Yong-Jin Wu
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Nicholas A Meanwell
- Department of Discovery and Chemistry and Molecular Technologies, Bristol-Myers Squibb PRI, PO Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
15
|
Han J, Kiss L, Mei H, Remete AM, Ponikvar-Svet M, Sedgwick DM, Roman R, Fustero S, Moriwaki H, Soloshonok VA. Chemical Aspects of Human and Environmental Overload with Fluorine. Chem Rev 2021; 121:4678-4742. [PMID: 33723999 PMCID: PMC8945431 DOI: 10.1021/acs.chemrev.0c01263] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Indexed: 12/24/2022]
Abstract
Over the last 100-120 years, due to the ever-increasing importance of fluorine-containing compounds in modern technology and daily life, the explosive development of the fluorochemical industry led to an enormous increase of emission of fluoride ions into the biosphere. This made it more and more important to understand the biological activities, metabolism, degradation, and possible environmental hazards of such substances. This comprehensive and critical review focuses on the effects of fluoride ions and organofluorine compounds (mainly pharmaceuticals and agrochemicals) on human health and the environment. To give a better overview, various connected topics are also discussed: reasons and trends of the advance of fluorine-containing pharmaceuticals and agrochemicals, metabolism of fluorinated drugs, withdrawn fluorinated drugs, natural sources of organic and inorganic fluorine compounds in the environment (including the biosphere), sources of fluoride intake, and finally biomarkers of fluoride exposure.
Collapse
Affiliation(s)
- Jianlin Han
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Loránd Kiss
- University
of Szeged, Institute of Pharmaceutical Chemistry
and Interdisciplinary Excellence Centre, Eötvös u. 6, 6720 Szeged, Hungary
| | - Haibo Mei
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Attila Márió Remete
- University
of Szeged, Institute of Pharmaceutical Chemistry
and Interdisciplinary Excellence Centre, Eötvös u. 6, 6720 Szeged, Hungary
| | - Maja Ponikvar-Svet
- Department
of Inorganic Chemistry and Technology, Jožef
Stefan Institute, Jamova
cesta 39, 1000 Ljubljana, Slovenia
| | - Daniel Mark Sedgwick
- Departamento
de Química Orgánica, Universidad
de Valencia, 46100 Burjassot, Valencia Spain
| | - Raquel Roman
- Departamento
de Química Orgánica, Universidad
de Valencia, 46100 Burjassot, Valencia Spain
| | - Santos Fustero
- Departamento
de Química Orgánica, Universidad
de Valencia, 46100 Burjassot, Valencia Spain
| | - Hiroki Moriwaki
- Hamari
Chemicals Ltd., 1-19-40, Nankokita, Suminoe-ku, Osaka 559-0034, Japan
| | - Vadim A. Soloshonok
- Department
of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
16
|
Awakawa T, Barra L, Abe I. Biosynthesis of sulfonamide and sulfamate antibiotics in actinomycete. J Ind Microbiol Biotechnol 2021; 48:6123731. [PMID: 33928358 PMCID: PMC9113183 DOI: 10.1093/jimb/kuab001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/21/2020] [Indexed: 02/04/2023]
Abstract
Abstract
Sulfonamides and sulfamates are a group of organosulfur compounds that contain the signature sulfamoyl structural motif. These compounds were initially only known as synthetic antibacterial drugs but were later also discovered as natural products. Eight highly potent examples have been isolated from actinomycetes to date, illustrating the large biosynthetic repertoire of this bacterial genus. For the biosynthesis of these compounds, several distinct and unique biosynthetic machineries have been discovered, capable to generate the unique S–N bond. For the creation of novel, second generation natural products by biosynthetic engineering efforts, a detailed understanding of the underlying enzyme machinery toward potent structural motifs is crucial. In this review, we aim to summarize the current state of knowledge on sulfonamide and sulfamate biosynthesis. A detailed discussion for the secondary sulfamate ascamycin, the tertiary sulfonamide sulfadixiamycin A, and the secondary sulfonamide SB-203208 is provided and their bioactivities and mode of actions are discussed.
Collapse
Affiliation(s)
| | | | - Ikuro Abe
- Correspondence should be addressed to: Lena Barra at
| |
Collapse
|
17
|
Feng X, Bello D, O'Hagan D. Isolation of 5'- O-sulfamyladenosine and related 3'- O-β-glucosylated adenosines from the nucleocidin producer Streptomyces calvus. RSC Adv 2021; 11:5291-5294. [PMID: 35423098 PMCID: PMC8694766 DOI: 10.1039/d1ra00235j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/03/2023] Open
Abstract
The isolation of three adenosine based metabolites 6-8 from Streptomyces calvus is reported. The metabolites are structurally related to the fluorine containing antibiotic nucleocidin 1 and two recently identified glycosylated fluoroadenosines 2 and 3, however in this case the three metabolites do not contain a fluorine, suggesting that the biosynthetic enzymes to the fluorometabolites also process their non-fluorinated counterparts.
Collapse
Affiliation(s)
- Xuan Feng
- School of Chemistry, University of St Andrews North Haugh, St Andrews, Fife, KY16 9ST UK
| | - Davide Bello
- School of Chemistry, University of St Andrews North Haugh, St Andrews, Fife, KY16 9ST UK
| | - David O'Hagan
- School of Chemistry, University of St Andrews North Haugh, St Andrews, Fife, KY16 9ST UK
| |
Collapse
|
18
|
Gimenez D, Phelan A, Murphy CD, Cobb SL. 19F NMR as a tool in chemical biology. Beilstein J Org Chem 2021; 17:293-318. [PMID: 33564338 PMCID: PMC7849273 DOI: 10.3762/bjoc.17.28] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
We previously reviewed the use of 19F NMR in the broad field of chemical biology [Cobb, S. L.; Murphy, C. D. J. Fluorine Chem. 2009, 130, 132-140] and present here a summary of the literature from the last decade that has the technique as the central method of analysis. The topics covered include the synthesis of new fluorinated probes and their incorporation into macromolecules, the application of 19F NMR to monitor protein-protein interactions, protein-ligand interactions, physiologically relevant ions and in the structural analysis of proteins and nucleic acids. The continued relevance of the technique to investigate biosynthesis and biodegradation of fluorinated organic compounds is also described.
Collapse
Affiliation(s)
- Diana Gimenez
- Department of Chemistry, Durham University, South Road, Durham, DH13LE, UK
| | - Aoife Phelan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Steven L Cobb
- Department of Chemistry, Durham University, South Road, Durham, DH13LE, UK
| |
Collapse
|
19
|
Ngivprom U, Kluaiphanngam S, Ji W, Siriwibool S, Kamkaew A, Ketudat Cairns JR, Zhang Q, Lai RY. Characterization of NucPNP and NucV involved in the early steps of nucleocidin biosynthesis in Streptomyces calvus. RSC Adv 2021; 11:3510-3515. [PMID: 35424298 PMCID: PMC8694150 DOI: 10.1039/d0ra10878b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022] Open
Abstract
Nucleocidin 1 produced by Streptomyces calvus is one of five characterized natural products containing fluorine. It was discovered in 1956, but its biosynthesis is not yet completely resolved. Recently, the biosynthetic gene cluster of 1 was identified. The nucPNP gene, which was initially annotated as orf206 and encodes a putative purine nucleoside phosphorylase, is essential for nucleocidin production. In this study, we performed in vitro assays and showed NucPNP produced adenine 3 from methylthioadenosine (MTA) 2 and adenosine 4. We also showed the downstream enzyme, NucV annotated as adenine phosphoribosyltransferase (APRT), catalyzes AMP formation from adenine 3 and 5-phospho-α-d-ribose-1-diphosphate (PRPP) 5. However, the catalytic efficiency of NucV was much slower than its homolog ScAPRT involved in the biosynthesis of canonical purine nucleoside in the same strain. These results provide new insights in nucleocidin biosynthesis and could guide future research on organofluorine formation.
Collapse
Affiliation(s)
- Utumporn Ngivprom
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Surayut Kluaiphanngam
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Wenjuan Ji
- Department of Chemistry, Fudan University Shanghai 200433 China
| | - Siriwalee Siriwibool
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - James R Ketudat Cairns
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand .,Center for Biomolecular Structure, Function and Application, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Qi Zhang
- Department of Chemistry, Fudan University Shanghai 200433 China
| | - Rung-Yi Lai
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand .,Center for Biomolecular Structure, Function and Application, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| |
Collapse
|
20
|
Shen J, Zhang L, Meng X. Recent advances in cyclization reactions of isatins or thioisatins via C–N or C–S bond cleavage. Org Chem Front 2021. [DOI: 10.1039/d1qo00868d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review summarizes recent developments on cyclization reactions induced by the C–N or C–S bond cleavage of isatins or thioisatins in the last 5 years, which produce fused products instead of spiro compounds.
Collapse
Affiliation(s)
- Jinhui Shen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Lei Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
21
|
Calero P, Volke DC, Lowe PT, Gotfredsen CH, O'Hagan D, Nikel PI. A fluoride-responsive genetic circuit enables in vivo biofluorination in engineered Pseudomonas putida. Nat Commun 2020; 11:5045. [PMID: 33028813 PMCID: PMC7541441 DOI: 10.1038/s41467-020-18813-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
Fluorine is a key element in the synthesis of molecules broadly used in medicine, agriculture and materials. Addition of fluorine to organic structures represents a unique strategy for tuning molecular properties, yet this atom is rarely found in Nature and approaches to integrate fluorometabolites into the biochemistry of living cells are scarce. In this work, synthetic gene circuits for organofluorine biosynthesis are implemented in the platform bacterium Pseudomonas putida. By harnessing fluoride-responsive riboswitches and the orthogonal T7 RNA polymerase, biochemical reactions needed for in vivo biofluorination are wired to the presence of fluoride (i.e. circumventing the need of feeding expensive additives). Biosynthesis of fluoronucleotides and fluorosugars in engineered P. putida is demonstrated with mineral fluoride both as only fluorine source (i.e. substrate of the pathway) and as inducer of the synthetic circuit. This approach expands the chemical landscape of cell factories by providing alternative biosynthetic strategies towards fluorinated building-blocks. Addition of fluorine to organic structures is a unique strategy for tuning molecular properties, but approaches to integrate fluorometabolites into the biochemistry of living cells are scarce. Here, the authors develop a fluoride-responsive genetic circuit to enable in vivo biofluorination in engineered Pseudomonas putida.
Collapse
Affiliation(s)
- Patricia Calero
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Phillip T Lowe
- School of Chemistry, University of St. Andrews, KY16 9ST St, Andrews, UK
| | | | - David O'Hagan
- School of Chemistry, University of St. Andrews, KY16 9ST St, Andrews, UK
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
22
|
Reichel M, Karaghiosoff K. Reagents for Selective Fluoromethylation: A Challenge in Organofluorine Chemistry. Angew Chem Int Ed Engl 2020; 59:12268-12281. [PMID: 32022357 PMCID: PMC7383490 DOI: 10.1002/anie.201913175] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/30/2020] [Indexed: 01/09/2023]
Abstract
The introduction of a monofluoromethyl moiety has undoubtedly become a very important area of research in recent years. Owing to the beneficial properties of organofluorine compounds, such as their metabolic stability, the incorporation of the CH2 F group as a bioisosteric substitute for various functional groups is an attractive strategy for the discovery of new pharmaceuticals. Furthermore, the monofluoromethyl unit is also widely used in agrochemistry, in pharmaceutical chemistry, and in fine chemicals. The problems associated with climate change and the growing need for environmentally friendly industrial processes mean that alternatives to the frequently used CFC and HFBC fluoromethylating agents (CH2 FCl and CH2 FBr) are urgently needed and also required by the Montreal Protocol. This has recently prompted many researchers to develop alternative fluoromethylation agents. This Minireview summarizes both the classical and new generation of fluoromethylating agents. Reagents that act via electrophilic, nucleophilic, and radical pathways are discussed, in addition to their precursors.
Collapse
Affiliation(s)
- Marco Reichel
- Department of ChemistryLudwig-Maximilian UniversityButenandstr. 5–1381377MunichGermany
| | | |
Collapse
|
23
|
Wu L, Tong MH, Kyeremeh K, Deng H. Identification of 5-Fluoro-5-Deoxy-Ribulose as a Shunt Fluorometabolite in Streptomyces sp. MA37. Biomolecules 2020; 10:biom10071023. [PMID: 32664266 PMCID: PMC7408626 DOI: 10.3390/biom10071023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 01/01/2023] Open
Abstract
A fluorometabolite, 5-fluoro-5-deoxy-D-ribulose (5-FDRul), from the culture broth of the soil bacterium Streptomyces sp. MA37, was identified through a combination of genetic manipulation, chemo-enzymatic synthesis and NMR comparison. Although 5-FDRul has been chemically synthesized before, it was not an intermediate or a shunt product in previous studies of fluorometalism in S. cattleya. Our study of MA37 demonstrates that 5-FDRul is a naturally occurring fluorometabolite, rendering it a new addition to this rare collection of natural products. The genetic inactivation of key biosynthetic genes involved in the fluorometabolisms in MA37 resulted in the increased accumulation of unidentified fluorometabolites as observed from 19F-NMR spectral comparison among the wild type (WT) of MA37 and the mutated variants, providing evidence of the presence of other new biosynthetic enzymes involved in the fluorometabolite pathway in MA37.
Collapse
Affiliation(s)
- Linrui Wu
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (L.W.); (M.H.T.)
| | - Ming Him Tong
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (L.W.); (M.H.T.)
| | - Kwaku Kyeremeh
- Department of Chemistry, University of Ghana, P.O. Box LG56 Legon-Accra, Ghana;
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (L.W.); (M.H.T.)
- Correspondence:
| |
Collapse
|
24
|
Reichel M, Karaghiosoff K. Reagenzien für die selektive Fluormethylierung: Herausforderungen der Organofluorchemie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913175] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marco Reichel
- Department Chemie Ludwig-Maximilians-Universität Butenandtstr. 5–13 81377 München Deutschland
| | - Konstantin Karaghiosoff
- Department Chemie Ludwig-Maximilians-Universität Butenandtstr. 5–13 81377 München Deutschland
| |
Collapse
|
25
|
Nieto-Domínguez M, Nikel PI. Intersecting Xenobiology and Neometabolism To Bring Novel Chemistries to Life. Chembiochem 2020; 21:2551-2571. [PMID: 32274875 DOI: 10.1002/cbic.202000091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/09/2020] [Indexed: 12/19/2022]
Abstract
The diversity of life relies on a handful of chemical elements (carbon, oxygen, hydrogen, nitrogen, sulfur and phosphorus) as part of essential building blocks; some other atoms are needed to a lesser extent, but most of the remaining elements are excluded from biology. This circumstance limits the scope of biochemical reactions in extant metabolism - yet it offers a phenomenal playground for synthetic biology. Xenobiology aims to bring novel bricks to life that could be exploited for (xeno)metabolite synthesis. In particular, the assembly of novel pathways engineered to handle nonbiological elements (neometabolism) will broaden chemical space beyond the reach of natural evolution. In this review, xeno-elements that could be blended into nature's biosynthetic portfolio are discussed together with their physicochemical properties and tools and strategies to incorporate them into biochemistry. We argue that current bioproduction methods can be revolutionized by bridging xenobiology and neometabolism for the synthesis of new-to-nature molecules, such as organohalides.
Collapse
Affiliation(s)
- Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
26
|
Wu L, Maglangit F, Deng H. Fluorine biocatalysis. Curr Opin Chem Biol 2020; 55:119-126. [PMID: 32087550 DOI: 10.1016/j.cbpa.2020.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/17/2019] [Accepted: 01/16/2020] [Indexed: 11/19/2022]
Abstract
The introduction of fluorine atoms into organic molecules has received considerable attention as these organofluorines have often found widespread applications in bioorganic chemistry, medicinal chemistry and biomaterial science. Despite innovation of synthetic C-F forming methodologies, selective fluorination is still extremely challenging. Therefore, a biotransformation approach using fluorine biocatalysts is needed to selectively introduce fluorine into structurally diverse molecules. Yet, there are few ways that enable incorporation of fluorine into structurally complex bioactive molecules. One is to extend the substrate scope of the existing enzyme inventory. Another is to expand the biosynthetic pathways to accept fluorinated precursors for producing fluorinated bioactive molecules. Finally, an understanding of the physiological roles of fluorometabolites in the producing microorganisms will advance our ability to engineer a microorganism to produce novel fluorinated commodities. Here, we review the fluorinase biotechnology and fluorine biocatalysts that incorporate fluorine motifs to generate fluorinated molecules, and highlight areas for future developments.
Collapse
Affiliation(s)
- Linrui Wu
- Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, UK
| | - Fleurdeliz Maglangit
- Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, UK; College of Science, University of the Philippines Cebu, Lahug, Cebu City, 6000, Philippines
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, UK.
| |
Collapse
|
27
|
Li Q, Chen J, Trajkovski M, Zhou Y, Fan C, Lu K, Tang P, Su X, Plavec J, Xi Z, Zhou C. 4′-Fluorinated RNA: Synthesis, Structure, and Applications as a Sensitive 19F NMR Probe of RNA Structure and Function. J Am Chem Soc 2020; 142:4739-4748. [DOI: 10.1021/jacs.9b13207] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Qiang Li
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jialiang Chen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Marko Trajkovski
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, EN-FIST Centre of Excellence, Ljubljana, Slovenia
| | - Yifei Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chaochao Fan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Kuan Lu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Pingping Tang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xuncheng Su
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, EN-FIST Centre of Excellence, Ljubljana, Slovenia
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
28
|
Abstract
AbstractOrganofluorines are widely used in a variety of applications, ranging from pharmaceuticals to pesticides and advanced materials. The widespread use of organofluorines also leads to its accumulation in the environment, and two major questions arise: how to synthesize and how to degrade this type of compound effectively? In contrast to a considerable number of easy-access chemical methods, milder and more effective enzymatic methods remain to be developed. In this review, we present recent progress on enzyme-catalyzed C–F bond formation and cleavage, focused on describing C–F bond formation enabled by fluorinase and C–F bond cleavage catalyzed by oxidase, reductase, deaminase, and dehalogenase.
Collapse
|