1
|
Esteruelas MA, Leon F, Moreno-Blázquez S, Oliván M, Oñate E. Preparation, Aromaticity, and Bromination of Spiro Iridafurans. Inorg Chem 2023; 62:16810-16824. [PMID: 37782299 DOI: 10.1021/acs.inorgchem.3c02228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Iridium centers of [Ir(μ-Cl)(C8H14)2]2 (1) activate the Cβ(sp2)-H bond of benzylideneacetone to give [Ir(μ-Cl){κ2-C,O-[C(Ph)CHC(Me)O]}2]2 (2), which is the starting point for the preparation of the spiro iridafurans IrCl{κ2-C,O-[C(Ph)CHC(Me)O]}2(PiPr3) (3), [Ir{κ2-C,O-[C(Ph)CHC(Me)O]}2(MeCN)2]BF4 (4), [Ir(μ-OH){κ2-C,O-[C(Ph)CHC(Me)O]}2]2 (5), Ir{κ2-C,O-[C(Ph)CHC(Me)O]}2{κ2-C,N-[C6MeH3-py]} (6), and Ir{κ2-C,O-[C(Ph)CHC(Me)O]}2{κ2-O,O-[acac]} (7). The five-membered rings are orthogonally arranged with the oxygen atoms in trans in an octahedral environment of the iridium atom. Spiro iridafurans are aromatic. The degree of aromaticity and the negative charge of the CH-carbon of the rings depend on ligand trans to the carbon directly attached to the metal. Aromaticity has been experimentally confirmed by bromination of iridafurans with N-bromosuccinimide (NBS). Reactions are sensitive to the degree of aromaticity of the ring and the negative charge of the attacked CH-carbon. Iridafurans can be selectively brominated, when different ligands lie trans to metalated carbons. Bromination of 3 occurs in the ring with the metalated carbon trans to chloride, whereas the bromination of 6 takes place in the ring with the metalated carbon trans to pyridyl. The first gives IrCl{κ2-C,O-[C(Ph)CBrC(Me)O]}{κ2-C,O-[C(Ph)CHC(Me)O]}(PiPr3) (8), which reacts with more NBS to form IrCl{κ2-C,O-[C(Ph)CBrC(Me)O]}2(PiPr3) (9). The second yields Ir{κ2-C,O-[C(Ph)CBrC(Me)O]}{κ2-C,O-[C(Ph)CHC(Me)O]}{κ2-C,N-[C6MeH3-py]} (10). The origin of the selectivity is kinetic, with the rate-determining step of the reaction being the NBS attack. The activation energy depends on the negative charge of the attacked atom; a higher negative charge allows for a lower activation energy. Accordingly, complex 7 undergoes bromination in the acetylacetonate ligand, giving Ir{κ2-C,O-[C(Ph)CHC(Me)O]}2{κ2-O,O-[acacBr]} (11).
Collapse
Affiliation(s)
- Miguel A Esteruelas
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - Félix Leon
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - Sonia Moreno-Blázquez
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - Montserrat Oliván
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
2
|
Iwamoto T, Suzuki M, Hasegawa H, Abeta H, Matsuo Y, Tanaka T, Yasuda N, Ishii Y. One-pot Syntheses of Benzo- and Benzofuran-fused Iridaoxabenzenes via CH Bond Activations of Alkyl-bridged Diphenol Derivatives. Chem Asian J 2023; 18:e202300640. [PMID: 37610036 DOI: 10.1002/asia.202300640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
One-pot syntheses of new π-extended metallaaromatic compounds have been developed by utilizing Ir-mediated CH bond activation of ethylene- or ethylidene-bridged diphenol derivatives. Depending on the bridging alkyl groups, two types of iridaoxabenzenes, both of which are doubly fused with benzo and benzofuran units, have been obtained. Studies on their structures and electronic characters indicate that both complexes have an aromatic character on the iridaoxacycles, and their π-conjugated systems are fully delocalized over the whole molecular skeletons. These novel metallaaromatic complexes exhibited some reactivities which are distinct from those reported for the non-fused metallaaromatic compounds.
Collapse
Affiliation(s)
- Takahiro Iwamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Mika Suzuki
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Hibiki Hasegawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Hinako Abeta
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Yusuke Matsuo
- Department of Chemistry, Graduate School of Science, Kyoto University Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takayuki Tanaka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan)
| | - Nobuhiro Yasuda
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Youichi Ishii
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| |
Collapse
|
3
|
Liu HC, Ruan K, Ma K, Fei J, Lin YM, Xia H. Synthesis of metalla-dual-azulenes with fluoride ion recognition properties. Nat Commun 2023; 14:5583. [PMID: 37696902 PMCID: PMC10495402 DOI: 10.1038/s41467-023-41250-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023] Open
Abstract
Azulene-based conjugated systems are of great interests due to their unusual structures and photophysical properties. Incorporation of a transition metal into azulene skeleton presents an intriguing opportunity to combine the dπ-pπ and pπ-pπ conjugated properties. No such metallaazulene skeleton however has been reported to date. Here, we describe our development of an efficient [5 + 2] annulation reaction to rapid construction of a unique metal-containing [5-5-7] scaffold, termed metalla-dual-azulene (MDA), which includes a metallaazulene and a metal-free organic azulene intertwined by sharing the tropylium motif. The two azulene motifs in MDA exhibit distinct reactivities. The azulene motif readily undergoes nucleophilic addition, leading to N-, O- and S-substituted cycloheptanetrienyl species. Demetalation of the metallaazulene moiety occurs when it reacts with nBu4NF, which enables highly selective recognition of fluoride anion and a noticeable color change. The practical [5 + 2] annulation methodology, facile functional-group modification, high and selective fluoride detection make this new π-conjugated polycyclic system very suitable for potential applications in photoelectric and sensing materials.
Collapse
Affiliation(s)
- Hai-Cheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, Fujian, China
| | - Kaidong Ruan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, Fujian, China
| | - Kexin Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, Fujian, China
| | - Jiawei Fei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, Fujian, China
| | - Yu-Mei Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, Fujian, China.
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, Fujian, China.
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
4
|
Báez-Grez R, Pino-Rios R. On the Importance of Noncovalent Interactions in the Stabilization of Nonconventional Compounds Using Bulky Groups. ACS OMEGA 2023; 8:23168-23173. [PMID: 37396283 PMCID: PMC10308520 DOI: 10.1021/acsomega.3c02663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023]
Abstract
In this article, we studied the capability of bulky groups to contribute to the stabilization of a given compound in addition to the well-known steric effect related to substituents due to their composition (alkyl chains and aromatic groups, among others). For this purpose, the recently synthesized 1-bora-3-boratabenzene anion which contains large substituents was analyzed by means of the independent gradient model (IGM), natural population analysis (NPA) at the TPSS/def2-TZVP level, force field-based energy decomposition analysis (EDA-FF) applying the universal force field (UFF), and molecular dynamics calculations under the GFN2-xTB approach. The results indicate that the bulky groups should not only be considered for their steric effects but also for their ability to stabilize a system that could be very reactive.
Collapse
Affiliation(s)
- Rodrigo Báez-Grez
- Computational
and Theoretical Chemistry Group, Departamento de Ciencias Químicas,
Facultad de Ciencias Exactas, Universidad
Andres Bello, República 275, 8370146 Santiago, Chile
| | - Ricardo Pino-Rios
- Química
y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat., Casilla 121, Iquique 1100000, Chile
| |
Collapse
|
5
|
Chu Z, Li J, Hua Y, Luo M, Chen D, Xia H. Hetero-carbolong chemistry: experimental and theoretical studies of diaza-metallapentalenes. Chem Commun (Camb) 2023; 59:4173-4176. [PMID: 36939834 DOI: 10.1039/d3cc00029j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Four diaza-osmapentalenes were prepared by two-step reactions, through the treatment of an alkyne-coordinated osmium complex with azo compounds, followed by the addition of AgSbF6/CO. Their aromaticity was confirmed by crystal parameters, NMR spectra and theoretical calculations. These complexes are the first diaza-metallapentalenes representing a new class of metallaaromatics.
Collapse
Affiliation(s)
- Zhenwei Chu
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Jinhua Li
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Yuhui Hua
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Ming Luo
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Dafa Chen
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Haiping Xia
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| |
Collapse
|
6
|
Bai W, Sun Y, Wang Y, Zhou Y, Zhao Y, Bao X, Li Y. An aromatic dimetallapolycyclic complex with two rhenapyrylium rings. Chem Commun (Camb) 2022; 58:6409-6412. [PMID: 35543294 DOI: 10.1039/d2cc01789j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Extension of the polycyclic benzo-rhenapyrylium structure by a fused metallaaromatic ring and a benzene unit are reported. The dirhena-aromatic complex 4 shows strong absorption in the visible region and a significant absorption in the near-infrared (NIR) region (λmax = 842 nm). DFT calculations are performed to understand its aromatic nature and electronic behavior.
Collapse
Affiliation(s)
- Wei Bai
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P. R. China.
| | - Yue Sun
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P. R. China.
| | - Yilun Wang
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P. R. China. .,School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, P. R. China
| | - Yan Zhou
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning, 530008, P. R. China
| | - Yue Zhao
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P. R. China.
| | - Xiao Bao
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P. R. China.
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P. R. China. .,School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, P. R. China
| |
Collapse
|
7
|
Xu B, Mao W, Wu C, Li J, Lu Z, Luo M, Chen D, Xia H. A
One‐Pot
Strategy for the Synthesis of
β
‐Substituted
Rhoda‐ and
Irida‐Carbolong
Complexes. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Binbin Xu
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Wei Mao
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Chengcheng Wu
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Jinhua Li
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Zhengyu Lu
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Ming Luo
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Dafa Chen
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Haiping Xia
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| |
Collapse
|
8
|
Cao Q, Wang P, Cai Y, Hua Y, Zheng S, Cheng X, HE G, Wen TB, Chen J. Synthesis and Characterization of Rhena[10]annulynes. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00463a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Most of the reported metallacycles were limited to small cyclic complexes that contain six-membered or smaller rings. Larger-membered metallacycles are still rare and mainly focus on the dimetallacycles. Herein, we...
Collapse
|
9
|
Wei W, Xu X, Lee KH, Lin R, Sung HHY, Williams ID, Lin Z, Jia G. Reactions of Rhenacyclobutadiene Complexes with Allenes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Wei
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Xin Xu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Ka-Ho Lee
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Ran Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Herman H. Y. Sung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Ian D. Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Guochen Jia
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| |
Collapse
|
10
|
Li J, Lu Z, Hua Y, Chen D, Xia H. Carbolong chemistry: nucleophilic aromatic substitution of a triflate functionalized iridapentalene. Chem Commun (Camb) 2021; 57:8464-8467. [PMID: 34346430 DOI: 10.1039/d1cc03261e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The reactivity of the triflate functionalized iridapentalene 1, [Ir{[double bond, length as m-dash]CHC(CH2C(CO2Me)2CH2)[double bond, length as m-dash]CC[double bond, length as m-dash]CHC(OTf)[double bond, length as m-dash]CH}(CO)(PPh3)2]OTf, with C-, N-, O- and S-centered neutral nucleophiles was studied, leading to the isolation of a wide array of irida-carbolong derivatives. As an extension, a polycyclic complex with a rare six-fused-ring structure was constructed. This strategy provides a new route for the construction of functionalized metallaaromatic complexes, and the resulting iridacycles exhibit broad spectral absorption ranges, making them potential photoelectric materials.
Collapse
Affiliation(s)
- Jinhua Li
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | | | | | | | | |
Collapse
|
11
|
Talavera M, Cid-Seara KM, Peña-Gallego Á, Bolaño S. Key factors in the synthesis of polycyclic iridaaromatics via the methoxyalkenylcarbene pathway. Dalton Trans 2021; 50:11216-11220. [PMID: 34338266 DOI: 10.1039/d1dt01361k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Polycyclic iridaaromatic compounds are of great interest not only because of the contributions made in "aromatic chemistry", but also because of the possibility of improving the results of the applications of the corresponding organic analogues in different fields. Therefore, understanding the requirements necessary to build on demand this type of compound with specific properties is of great importance. In this work, the keys to successfully synthesize iridaaromatic complexes via methoxyalkenylcarbenes are established. Experimental and theoretical results show (i) that bearing two aromatic substituents on the gamma carbon of the methoxyalkylcarbene promotes the C-H bond activation; (ii) the need for large steric hindrance of the second substituent for a selective synthesis and, (iii) the selectivity in the C-H bond activation towards the less sterically hindered system.
Collapse
Affiliation(s)
- Maria Talavera
- Universidade de Vigo, Departamento de Química Inorgánica, Campus Universitario, 36310, Vigo, Spain.
| | | | | | | |
Collapse
|
12
|
Talavera M, Bolaño S. Iridaaromatics via Methoxy(alkenyl)carbeneiridium Complexes. Molecules 2021; 26:molecules26154655. [PMID: 34361807 PMCID: PMC8347548 DOI: 10.3390/molecules26154655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/26/2022] Open
Abstract
This review describes the development of a versatile methodology to synthesize polycyclic metallaaromatic hydrocarbons based on iridium, as well as the studies that helped us to determine and understand what is required in order to broaden the scope and the selectivity of the methodology and stabilize the complexes obtained. This methodology aims to open the door to new materials based on graphene fragments.
Collapse
Affiliation(s)
- Maria Talavera
- Department of Chemistry, Humboldt–Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany;
- Departamento de Química Inorgánica, Universidade de Vigo, Campus Universitario, 36310 Vigo, Spain
| | - Sandra Bolaño
- Departamento de Química Inorgánica, Universidade de Vigo, Campus Universitario, 36310 Vigo, Spain
- Correspondence:
| |
Collapse
|
13
|
Abstract
Since the prediction of the existence of metallabenzenes in 1979, metallaaromatic chemistry has developed rapidly, due to its importance in both experimental and theoretical fields. Now six major types of metallaromatic compounds, metallabenzenes, metallabenzynes, heterometallaaromatics, dianion metalloles, metallapentalenes and metallapentalynes (also termed carbolongs), and spiro metalloles, have been reported and extensively studied. Their parent organic analogues may be aromatic, non-aromatic, or even anti-aromatic. These unique systems not only enrich the large family of aromatics, but they also broaden our understanding and extend the concept of aromaticity. This review provides a comprehensive overview of metallaaromatic chemistry. We have focused on not only the six major classes of metallaaromatics, including the main-group-metal-based metallaaromatics, but also other types, such as metallacyclobutadienes and metallacyclopropenes. The structures, synthetic methods, and reactivities are described, their applications are covered, and the challenges and future prospects of the area are discussed. The criteria commonly used to judge the aromaticity of metallaaromatics are presented.
Collapse
Affiliation(s)
- Dafa Chen
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Yuhui Hua
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Haiping Xia
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
14
|
Luo M, Sui Y, Lin X, Zhu C, Yan Z, Ruan Y, Zhang H, Xia H. [3+2] cycloaddition reaction of metallacyclopropene with nitrosonium ion: isolation of aromatic metallaisoxazole. Chem Commun (Camb) 2020; 56:6806-6809. [DOI: 10.1039/d0cc02502j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The [3+2] cycloaddition of metallacyclopropene with nitrosonium ion gives the first aromatic osmaisoxazole-fused osmapentalene.
Collapse
Affiliation(s)
- Ming Luo
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Yanheng Sui
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Xinlei Lin
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Congqing Zhu
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Zhewei Yan
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Yonghong Ruan
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Hong Zhang
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Haiping Xia
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
- Shenzhen Grubbs Institute
| |
Collapse
|