1
|
Liu L, Xu Y, Su J, Wei J, Liu X, Peng Q, Chang J, Teng B. Exploring microstructures of metal-doped oxides via simulated Raman spectrum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124616. [PMID: 38857547 DOI: 10.1016/j.saa.2024.124616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Solid solution of metal-doped oxide has been widely used in material industry and catalysis process. Its performance is highly correlated with the distribution of doped ions. Due to the complex distribution of doped ions in solid solution and its variation with temperatures, to obtain the microstructures of metal-doped ions in solid solution remains a substantial challenge. Taken Ce1-xZrxO2 as a model, the global structure searching, structures proportion with temperature determined by Boltzmann distribution, and the weighted simulation Raman spectra were integrated to explore the microstructures of metal-doped solid solution oxides. It was further verified by application into rutile and anatase TiO2 mixture, indicating that the present method is feasible to deduce the microstructure of metal composite oxides. We anticipate that it provides a powerful solution to explore microstructures of solid solution and complex metal oxides.
Collapse
Affiliation(s)
- Le Liu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuxing Xu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Junchao Su
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiangtao Wei
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xingchen Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Qing Peng
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jie Chang
- Institute of Sustainability of Chemical, Energy and Environment, Agency for Science, Technology and Research, Singapore 627833, Singapore.
| | - Botao Teng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Fang Y, Hu R, Ye JY, Qu H, Zhou ZY, Duan S, Tian ZQ, Xu X. Revealing the interfacial water structure on a p-nitrobenzoic acid specifically adsorbed Au(111) surface. Chem Sci 2023; 14:4905-4912. [PMID: 37181786 PMCID: PMC10171072 DOI: 10.1039/d3sc00473b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
The detailed structure of the water layer in the inner Helmholtz plane of a solid/aqueous solution interface is closely related to the electrochemical and catalytic performances of electrode materials. While the applied potential can have a great impact, specifically adsorbed species can also influence the interfacial water structure. With the specific adsorption of p-nitrobenzoic acid on the Au(111) surface, a protruding band above 3600 cm-1 appears in the electrochemical infrared spectra, indicating a distinct interfacial water structure as compared to that on bare metal surfaces, which displays a potential-dependent broad band in the range of 3400-3500 cm-1. Although three possible structures have been guessed for this protruding infrared band, the band assignment and interfacial water structure remain ambiguous in the past two decades. Herein, by combining surface-enhanced infrared absorption spectroscopy and our newly developed quantitative computational method for electrochemical infrared spectra, the protruding infrared band is clearly assigned to the surface-enhanced stretching mode of water molecules hydrogen-bonded to the adsorbed p-nitrobenzoate ions. Water molecules, meanwhile, are hydrogen-bonded with themselves to form chains of five-membered rings. Based on the reaction free energy diagram, we further demonstrate that both hydrogen-bonding interactions and coverages of specifically adsorbed p-nitrobenzoate play an important role in determining the structure of the water layer in the Au(111)/p-nitrobenzoic acid solution interface. Our work sheds light on structural studies of the inner Helmholtz plane under specific adsorptions, which advances the understanding of structure-property relationships in electrochemical and heterogeneous catalytic systems.
Collapse
Affiliation(s)
- Yuan Fang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Fudan University Shanghai 200438 China
| | - Ren Hu
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University Xiamen 361005 China
| | - Jin-Yu Ye
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University Xiamen 361005 China
| | - Hang Qu
- Department of Chemistry and Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Zhi-You Zhou
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University Xiamen 361005 China
| | - Sai Duan
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Fudan University Shanghai 200438 China
| | - Zhong-Qun Tian
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University Xiamen 361005 China
| | - Xin Xu
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Fudan University Shanghai 200438 China
- Hefei National Laboratory Hefei 230088 China
| |
Collapse
|
3
|
Chang X, Vijay S, Zhao Y, Oliveira NJ, Chan K, Xu B. Understanding the complementarities of surface-enhanced infrared and Raman spectroscopies in CO adsorption and electrochemical reduction. Nat Commun 2022; 13:2656. [PMID: 35551449 PMCID: PMC9098881 DOI: 10.1038/s41467-022-30262-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/11/2022] [Indexed: 01/03/2023] Open
Abstract
In situ/operando surface enhanced infrared and Raman spectroscopies are widely employed in electrocatalysis research to extract mechanistic information and establish structure-activity relations. However, these two spectroscopic techniques are more frequently employed in isolation than in combination, owing to the assumption that they provide largely overlapping information regarding reaction intermediates. Here we show that surface enhanced infrared and Raman spectroscopies tend to probe different subpopulations of adsorbates on weakly adsorbing surfaces while providing similar information on strongly binding surfaces by conducting both techniques on the same electrode surfaces, i.e., platinum, palladium, gold and oxide-derived copper, in tandem. Complementary density functional theory computations confirm that the infrared and Raman intensities do not necessarily track each other when carbon monoxide is adsorbed on different sites, given the lack of scaling between the derivatives of the dipole moment and the polarizability. Through a comparison of adsorbed carbon monoxide and water adsorption energies, we suggest that differences in the infrared vs. Raman responses amongst metal surfaces could stem from the competitive adsorption of water on weak binding metals. We further determined that only copper sites capable of adsorbing carbon monoxide in an atop configuration visible to the surface enhanced infrared spectroscopy are active in the electrochemical carbon monoxide reduction reaction. Infrared and Raman spectroscopies are often assumed to provide similar insights into heterogeneous reaction mechanisms. This study shows that these techniques provide similar data when CO is strongly bound to a surface, yet distinct subpopulations of CO are probed when binding is weaker.
Collapse
Affiliation(s)
- Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100871, China.,Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Sudarshan Vijay
- CatTheory Center, Department of Physics, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Yaran Zhao
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Nicholas J Oliveira
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Karen Chan
- CatTheory Center, Department of Physics, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China. .,Beijing National Laboratory for Molecular Sciences, Beijing, 100871, China. .,Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
4
|
Fang Y, Hu R, Ding SY, Tian ZQ. A quantitative simulation method for electrochemical infrared and Raman spectroscopies of single-crystal metal electrodes. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Wang XA, Shen W, Zhou B, Yu D, Tang X, Liu J, Huang X. The rationality of using core -shell nanoparticles with embedded internal standards for SERS quantitative analysis based glycerol-assisted 3D hotspots platform. RSC Adv 2021; 11:20326-20334. [PMID: 35479874 PMCID: PMC9033995 DOI: 10.1039/d1ra01957k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
Surface enhanced Raman spectroscopy (SERS) is a promising sensing technique that can provide unique chemical and structural fingerprint information, but gaining reliable SERS quantitative data with high sensitivity and stability still remains a challenge. Although using a molecule as an internal standard (IS) can improve the SERS quantitative capability, the reliability and SERS measuring conditions for signal fluctuations during calibration based on IS are yet to be explored when the embedded IS molecules and target objects are located in different environments. Herein, a 3D hotspot matrix SERS platform based on Au@4-MPy@AgNPs was constructed in water with the assistance of glycerol and the dynamic signal changes from the IS, i.e. 4-Mpy, and target molecules were monitored during the process of evaporation with high sensitivity and stability. In contrast to the traditional water-dispersed drying film system, the variation trends of IS and target molecules were consistent in the glycerol-assisted liquid film protection system. Therefore, it is reasonable to calibrate the signal fluctuation by utilizing the embedded IS based on the construction strategy of a glycerol-assisted 3D hotspot platform. This work demonstrates a rational, reliable and precise SERS quantitative technique for testing analyte concentrations in practical systems and has great application prospects in the field of analytical chemistry.
Collapse
Affiliation(s)
- Xiao-An Wang
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China +86-551-65591132 +86-551-65591142
- Institute of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Wei Shen
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China +86-551-65591132 +86-551-65591142
| | - Binbin Zhou
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China +86-551-65591132 +86-551-65591142
- Department of Mechanical Engineering, City University of Hong Kong Kowloon Hong Kong China
| | - Daoyang Yu
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China +86-551-65591132 +86-551-65591142
| | - Xianghu Tang
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China +86-551-65591132 +86-551-65591142
| | - Jinhuai Liu
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China +86-551-65591132 +86-551-65591142
- Institute of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Xingjiu Huang
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China +86-551-65591132 +86-551-65591142
- Institute of Physical Science and Information Technology, Anhui University Hefei 230601 China
| |
Collapse
|
6
|
Rebollar L, Intikhab S, Oliveira NJ, Yan Y, Xu B, McCrum IT, Snyder JD, Tang MH. “Beyond Adsorption” Descriptors in Hydrogen Electrocatalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03801] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luis Rebollar
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Saad Intikhab
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Nicholas J. Oliveira
- Department of Chemical and Biomolecular Engineering, Center for Catalysis Science and Technology, University of Delaware, Newark, Delaware 19716, United States
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering, Center for Catalysis Science and Technology, University of Delaware, Newark, Delaware 19716, United States
| | - Bingjun Xu
- Department of Chemical and Biomolecular Engineering, Center for Catalysis Science and Technology, University of Delaware, Newark, Delaware 19716, United States
| | - Ian T. McCrum
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Joshua D. Snyder
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Maureen H. Tang
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
7
|
Silva CD, Corradini PG, Del Colle V, Mascaro LH, de Lima FHB, Pereira EC. Pt/Rh/Pt and Pt/Ru/Pt multilayers for the electrochemical oxidation of methanol and ethanol. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Fang Y, Ding SY, Zhang M, Steinmann SN, Hu R, Mao BW, Feliu JM, Tian ZQ. Revisiting the Atomistic Structures at the Interface of Au(111) Electrode–Sulfuric Acid Solution. J Am Chem Soc 2020; 142:9439-9446. [DOI: 10.1021/jacs.0c02639] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Song-Yuan Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Meng Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Stephan N. Steinmann
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, F-69364 Lyon, France
| | - Ren Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bing-Wei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Juan M. Feliu
- Instituto de Electroquı́mica, Universidad de Alicante, San Vicente del Raspeig, Alicante E-03690, Spain
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
9
|
Sakaushi K. Quantum electrocatalysts: theoretical picture, electrochemical kinetic isotope effect analysis, and conjecture to understand microscopic mechanisms. Phys Chem Chem Phys 2020; 22:11219-11243. [DOI: 10.1039/d0cp01052a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fundamental aspects of quantum electrocatalysts are discussed together with the newly developed electrochemical kinetic isotope effect (EC-KIE) approach.
Collapse
Affiliation(s)
- Ken Sakaushi
- Center for Green Research on Energy and Environmental Materials
- National Institute for Materials Science
- Tsukuba
- Japan
| |
Collapse
|