1
|
Natt N, Powell BJ. Complex relaxation of trapped spin-states in spin crossover materials. Chem Sci 2024:d4sc04225e. [PMID: 39397820 PMCID: PMC11465417 DOI: 10.1039/d4sc04225e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
A diverse range of relaxation dynamics of trapped spin-states are observed in spin crossover (SCO) materials, including exponential, sigmoidal, stretched exponential, multi-step, and mixed kinetics. We reproduce and explain this full range of relaxation behaviours using a semi-empirical, semi-classical model that combines crystal field theory with elastic inter-molecular interactions. We show that frustrated intermolecular interactions, which are responsible for multistep thermal transitions, also lead to multiple energetically competitive ordered phases, even in systems that contain only one crystallographically distinct SCO site. This rugged free energy landscape leads to dynamic disorder and thence the complex dynamics widely observed in SCO materials. Similar mechanisms are vital for understanding dynamics of more complex materials from proteins to quantum materials.
Collapse
Affiliation(s)
- Nadeem Natt
- School of Mathematics and Physics, The University of Queensland Brisbane Queensland 4072 Australia
| | - Benjamin J Powell
- School of Mathematics and Physics, The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
2
|
Xie KP, Peng ZZ, Ruan ZY, Fan WD, Chen YR, Zheng XD, Zou YB, Wu SG, Xiao ZC. Two 2D spin-crossover coordination polymers constructed by [Pd(SCN) 4] 2- building blocks. Dalton Trans 2024; 53:15681-15687. [PMID: 39248579 DOI: 10.1039/d4dt02005g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Two new two-dimensional (2D) coordination polymers, [FeII(L)2{PdII(SCN)4}] (L1 = 2-methoxypyrazine, 1; and L2 = (E)-3-(phenyldiazenyl)pyridine, 2), were successfully constructed by using square-planar [Pd(SCN)4]2- building blocks. Complex 1 exhibits complete and one-step spin-crossover (SCO) behavior, while 2 exhibits incomplete and two-step SCO behavior. Further structural insight into this synergy reveals that the flat/flexing [Fe{Pd(SCN)4}]∞ sheets in 1 and 2 are stabilized by interlayered/intralayered supramolecular interactions.
Collapse
Affiliation(s)
- Kai-Ping Xie
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, P. R. China.
| | - Zhi-Zhen Peng
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, P. R. China.
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun, Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Wei-Ding Fan
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, P. R. China.
| | - Yan-Ru Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun, Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Xiao-Dan Zheng
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, P. R. China.
| | - Yu-Bo Zou
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, P. R. China.
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun, Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Zi-Cheng Xiao
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, P. R. China.
| |
Collapse
|
3
|
Mondal DJ, Kumar B, Shome S, Konar S. Observation of TLIESST above Liquid Nitrogen Temperature and Disclosure of Hidden Hysteresis in Multiresponsive Hofmann-type Coordination Polymers. Inorg Chem 2024; 63:15752-15761. [PMID: 39145691 DOI: 10.1021/acs.inorgchem.4c01675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Photoresponsive spin-crossover (SCO) molecules are an important class of bistable magnetic molecules with intriguing potential in device applications. The light-induced excited spin state trapping (LIESST) and the combined application of light and temperature can provide access to the metastable region of the SCO profile. The primary obstacle in utilizing light stimuli is the manifestation of light-induced trappings at extremely low temperatures. Herein, we report two novel multiresponsive 2D Hofmann-type coordination polymers exhibiting light-induced excited spin state trapping above liquid nitrogen temperature (TLIESST = 82 and 81 K). Stimulating the samples in conjugation with light and temperature successfully unveils hysteresis, which is otherwise concealed. Apart from light and temperature, we found that the SCO phenomenon is also responsive to external hydrostatic pressure and exhibits modulation of the hysteresis width and transition temperature shifts with changes in pressure.
Collapse
Affiliation(s)
- Dibya Jyoti Mondal
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Bhart Kumar
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Shraoshee Shome
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Sanjit Konar
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
4
|
Dürrmann A, Hörner G, Baabe D, Heinemann FW, de Melo MAC, Weber B. Cooperative spin crossover leading to bistable and multi-inert system states in an iron(III) complex. Nat Commun 2024; 15:7321. [PMID: 39183211 PMCID: PMC11345420 DOI: 10.1038/s41467-024-51675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
Cooperativity among spin centres has long been the royal road in spin crossover (SCO) research to impose magnetic bistability in terms of thermal hysteresis. In this work we access magnetic multi-inert states of the iron(III) compound {FeL2[B(Ph)4]} ≡ FeB at low temperature, in addition to thermal bistability. The packing of the low-spin and high-spin forms of crystalline FeB differs only marginally what ultimately leads to structural conservatism. This indicates that the SCO-immanent breathing of the complex cation is almost fully compensated by the anion matrix. The unique cooling rate dependence of the residual low-temperature magnetisation in FeB unveils continuous switching between the trapped high-spin (ON) and the relaxed low-spin state (OFF). The macroscopic ratio of the spin states (ON:OFF) can be adjusted as a simple function of the cooling rate. That is, cooperative spin crossover can be the source of bistable and multi-inert system states in the very same material.
Collapse
Affiliation(s)
- Andreas Dürrmann
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, Jena, Germany
- Inorganic Chemistry IV, University of Bayreuth, Universitätsstraße 30, Bayreuth, Germany
| | - Gerald Hörner
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, Jena, Germany
- Inorganic Chemistry IV, University of Bayreuth, Universitätsstraße 30, Bayreuth, Germany
| | - Dirk Baabe
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, Braunschweig, Germany
| | - Frank W Heinemann
- Lehrstuhl für Anorganische und Allgemeine Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, Erlangen, Germany
| | | | - Birgit Weber
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, Jena, Germany.
- Inorganic Chemistry IV, University of Bayreuth, Universitätsstraße 30, Bayreuth, Germany.
| |
Collapse
|
5
|
Chen YR, Ying TT, Chen YC, Liao PY, Ni ZP, Tong ML. Bidirectional photomagnetism, exciplex fluorescence and dielectric anomalies in a spin crossover Hofmann-type coordination polymer. Chem Sci 2024; 15:9240-9248. [PMID: 38903231 PMCID: PMC11186333 DOI: 10.1039/d4sc00331d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/09/2024] [Indexed: 06/22/2024] Open
Abstract
Stepped spin crossover (SCO) complexes with three or more spin states have promising applications in high-order data storage, multi-switches and multi-sensors. Further synergy with other functionalities, such as luminescence and dielectric properties, will provide a good chance to develop novel multifunctional SCO materials. Here, a bent pillar ligand and luminescent pyrene guest are integrated into a three-dimensional (3D) Hofmann-type metal-organic framework (MOF) [Fe(dpoda){Au(CN)2}2]·pyrene (dpoda = 2,5-di-(pyridyl)-1,3,4-oxadiazole). The magnetic data show an incomplete and two-step SCO behavior with the sequence of 1 ↔ 1/2 ↔ 1/4. The rare bi-directional light-induced excited spin-state trapping (LIESST) effect and light-induced stepped thermal relaxation after LIESST are observed. The pyrene guests interact with dpoda ligands via offset face-to-face π⋯π interactions to form intermolecular exciplex emissions. The competition between thermal quenching and stepped SCO properties results in a complicated and stepped exciplex fluorescence. Moreover, the stepped dielectric property with higher dielectric permittivity at lower temperature may be related to the more frustrated octahedral distortion parameters in the intermediate spin states. Hence, a 3D Hofmann-type MOF with bent pillar ligands and fluorescent guests illustrates an effective way for the development of multifunctional switching materials.
Collapse
Affiliation(s)
- Yan-Ru Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ting-Ting Ying
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Pei-Yu Liao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zhao-Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
6
|
Kitase K, Akahoshi D, Kitazawa T. Soma-Iwamoto-type SCO complex Fe(quinazoline) 2[Au(CN) 2] 2 using the quinazoline-type ligand. Dalton Trans 2024; 53:9248-9251. [PMID: 38722157 DOI: 10.1039/d4dt00458b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The Hofmann-type complex and Soma-Iwamoto-type complex are cyano-bridged coordination polymers and both have been widely researched. Now we have synthesized a novel Soma-Iwamoto-type complex, namely Fe(quinazoline)2[Au(CN)2]2. This complex shows the Soma-Iwamoto-type bilayer with Au-Au interactions and a SCO phenomenon with a gradual change of magnetic susceptibility. Fe(H2O)2(quinazoline)2[Au(CN)2]2 has also been synthesized and crystallized, and has been found to be a mononuclear complex with hydrogen-bonding network interactions.
Collapse
Affiliation(s)
- Kosuke Kitase
- Department of Chemistry, Toho University, Chiba 274-8510, Japan.
| | | | - Takafumi Kitazawa
- Department of Chemistry, Toho University, Chiba 274-8510, Japan.
- Research Centre for Materials with Integrated Properties, Toho University, Chiba 274-8510, Japan
| |
Collapse
|
7
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
8
|
Liu ZK, Sun K, Xue JP, Yao ZS, Tao J. Guest water-induced structural transformation and spin-crossover variation of a two-dimensional Hofmann-type compound. Dalton Trans 2024; 53:7522-7526. [PMID: 38597512 DOI: 10.1039/d4dt00435c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In this paper, we report a two-dimensional (2D) Hofmann-type spin-crossover coordination polymer [FeII(o-NTrz)2PtII(CN)4]·H2O (o-NTrz = 4-(o-nitrobenzyl)imino-1,2,4-triazole). Due to the remarkable configurational flexibility of triazole-based ligand, the porous structure of this compound can be reversibly regulated by the loss of guest water molecules as a consequence of rotation of o-NTrz. The 180° reorientation of the o-nitrobenzyl moiety not only induces a response of gate-closing/opening of the porous framework but also significantly modulates the spin transition temperature. The present investigation highlights the potential of Hofmann-type SCO compounds with flexible ligands in exploring unusual physical and chemical phenomena.
Collapse
Affiliation(s)
- Zhi-Kun Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| | - Ke Sun
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| | - Jin-Peng Xue
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| |
Collapse
|
9
|
Jordan DN, Straßburg PG, Woschko D, Carrella LM, Cuignet LP, Eickmeier K, Dronskowski R, Garcia Y, Rentschler E, Janiak C. Interpenetration Phenomena via Anion Template Effects in Fe(II) and Co(II) Coordination Networks with a Bis-(1,2,4-triazole) Ligand. Polymers (Basel) 2023; 15:3286. [PMID: 37571180 PMCID: PMC10422438 DOI: 10.3390/polym15153286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Seven new coordination networks, [Fe(tbbt)3](BF4)2 (1), [Co(tbbt)3](BF4)2 (2), [Fe(tbbt)3](ClO4)2 (3), [Co(tbbt)3](ClO4)2 (4), [Fe(NCS)2(tbbt)2] (5), [Co(NCS)2(tbbt)2] (6), and [Fe(H2O)2(tbbt)2]Br2·2H2O (7), were synthesized with the linker 1,1'-(trans-2-butene-1,4-diyl)bis-1,2,4-triazole (tbbt) and structurally investigated. The structure of complexes 1-4 is composed of three interpenetrating, symmetry-related 3D networks. Each individual 3D network forms a primitive, nearly cubic lattice (pcu) with BF4- or ClO4- anions present in the interstitial spaces. The structure of compounds 5 and 6 is composed of two-dimensional sql layers, which are parallel to each other in the AB stacking type. These layers are interpenetrated by one-dimensional chains, both having the same formula unit, [M(NCS)2(tbbt)2] (M = Fe, Co). The structure of compound 7 consists of parallel, two-dimensional sql layers in the ABCD stacking type. The interpenetration in 1-6 is not controlled by π-π-interactions between the triazole rings or C=C bonds, as could have been expected, but by (triazole)C-H⋯F4B, C-H⋯O4Cl, and C-H⋯SCN anion hydrogen bonds, which suggests a template effect of the respective non-coordinated or coordinated anion for the interpenetration. In 7, the (triazole)C-H⋯Br anion interactions are supplemented by O-H⋯O and O-H⋯Br hydrogen bonds involving the aqua ligand and crystal water molecules. It is evident that the coordinated and non-coordinated anions play an essential role in the formation of the networks and guide the interpenetration. All iron(II) coordination networks are colorless, off-white to yellow-orange, and have the metal ions in the high-spin state down to 77 K. Compound 5 stays in the high spin state even at temperatures down to 10 K.
Collapse
Affiliation(s)
- Dustin N. Jordan
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität, D-40204 Düsseldorf, Germany; (D.N.J.); (P.G.S.); (D.W.); (L.P.C.)
| | - Patrick G. Straßburg
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität, D-40204 Düsseldorf, Germany; (D.N.J.); (P.G.S.); (D.W.); (L.P.C.)
| | - Dennis Woschko
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität, D-40204 Düsseldorf, Germany; (D.N.J.); (P.G.S.); (D.W.); (L.P.C.)
| | - Luca M. Carrella
- Department of Chemistry, Johannes Gutenberg University Mainz, D-55128 Mainz, Germany; (L.M.C.); (E.R.)
| | - Laure P. Cuignet
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität, D-40204 Düsseldorf, Germany; (D.N.J.); (P.G.S.); (D.W.); (L.P.C.)
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
| | - Katharina Eickmeier
- Institute of Inorganic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany; (K.E.); (R.D.)
| | - Richard Dronskowski
- Institute of Inorganic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany; (K.E.); (R.D.)
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
| | - Eva Rentschler
- Department of Chemistry, Johannes Gutenberg University Mainz, D-55128 Mainz, Germany; (L.M.C.); (E.R.)
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität, D-40204 Düsseldorf, Germany; (D.N.J.); (P.G.S.); (D.W.); (L.P.C.)
| |
Collapse
|
10
|
Díaz-Torres R, Chastanet G, Collet E, Trzop E, Harding P, Harding DJ. Bidirectional photoswitchability in an iron(iii) spin crossover complex: symmetry-breaking and solvent effects. Chem Sci 2023; 14:7185-7191. [PMID: 37416698 PMCID: PMC10321481 DOI: 10.1039/d3sc01495a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/31/2023] [Indexed: 07/08/2023] Open
Abstract
The impact of solvent on spin crossover (SCO) behaviour is reported in two solvates [Fe(qsal-I)2]NO3·2ROH (qsal-I = 4-iodo-2-[(8-quinolylimino)methyl]phenolate; R = Me 1 or Et 2) which undergo abrupt and gradual SCO, respectively. A symmetry-breaking phase transition due to spin-state ordering from a [HS] to [HS-LS] state occurs at 210 K in 1, while T1/2 = 250 K for the EtOH solvate, where complete SCO occurs. The MeOH solvate exhibits LIESST and reverse-LIESST from the [HS-LS] state, revealing a hidden [LS] state. Moreover, photocrystallographic studies on 1 at 10 K reveal re-entrant photoinduced phase transitions to a high symmetry [HS] phase when irradiated at 980 nm or a high symmetry [LS] phase after irradiation at 660 nm. This study represents the first example of bidirectional photoswitchability and subsequent symmetry-breaking from a [HS-LS] state in an iron(iii) SCO material.
Collapse
Affiliation(s)
- Raúl Díaz-Torres
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University Pathum Thani 12121 Thailand
| | - Guillaume Chastanet
- Université de Bordeaux, ICMCB 87 Avenue du Dr A. Schweitzer Pessac F-33608 France
| | - Eric Collet
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251 F-35000 Rennes France
| | - Elzbieta Trzop
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251 F-35000 Rennes France
| | - Phimphaka Harding
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - David J Harding
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| |
Collapse
|
11
|
Li X, Zhang D, Qian Y, Liu W, Mathonière C, Clérac R, Bao X. Chemical Manipulation of the Spin-Crossover Dynamics through Judicious Metal-Ion Dilution. J Am Chem Soc 2023; 145:9564-9570. [PMID: 37075226 DOI: 10.1021/jacs.2c13697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
In 2019, our groups described a unique FeII complex, [Fe(2MeL)(NCBH3)2] (2MeL = N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)-1,2-ethanediamine) possessing a low-spin ground state that is not easily accessible due to the extremely slow dynamics of the high-spin to low-spin phase transition. Herein, we report the successful chemical manipulation of this spin-crossover (SCO) process through controlled metal-ion dilutions. The emergence or suppression of the thermally induced SCO behavior was observed depending on the radius of the metal ion used for the dilution (NiII or ZnII). Reversible photo-switching has been confirmed in all mixed-metal complexes whether the low-spin state is thermally accessible. Remarkably, the dilution with ZnII metal ions stabilizes HS FeII complexes with complete suppression of the thermally induced SCO process without destroying the reversible photoswitchability of the material.
Collapse
Affiliation(s)
- Xiang Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Dong Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yuqing Qian
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Wenxuan Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Corine Mathonière
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Rodolphe Clérac
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
| | - Xin Bao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
12
|
Su S, Wu S, Huang Y, Xu W, Gao K, Okazawa A, Okajima H, Sakamoto A, Kanegawa S, Sato O. Photoinduced Persistent Polarization Change in a Spin Transition Crystal. Angew Chem Int Ed Engl 2022; 61:e202208771. [DOI: 10.1002/anie.202208771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Sheng‐Qun Su
- Institute for Materials Chemistry and Engineering and IRCCS Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Shu‐Qi Wu
- Institute for Materials Chemistry and Engineering and IRCCS Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Yu‐Bo Huang
- Institute for Materials Chemistry and Engineering and IRCCS Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Wen‐Huang Xu
- Institute for Materials Chemistry and Engineering and IRCCS Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Kai‐Ge Gao
- College of Physical Science and Technology Yangzhou University Jiangsu 225009 P. R. China
| | - Atsushi Okazawa
- Department of Electrical Engineering and Bioscience Waseda University Okubo 3-4-1, Shinjuku-ku Tokyo 169-8555 Japan
| | - Hajime Okajima
- Faculty of Science and Engineering Chuo University 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| | - Akira Sakamoto
- Graduate School of Science and Engineering Aoyama Gakuin University 5-10-1 Fuchinobe, Chuo-ku Sagamihara 252-5258 Japan
| | - Shinji Kanegawa
- Institute for Materials Chemistry and Engineering and IRCCS Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering and IRCCS Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
13
|
Du S, Su D, Ruan Z, Zhou Y, Deng W, Zhang W, Sun Y, Liu J, Tong M. Reversible Switchability of Magnetic Anisotropy and Magnetodielectric Effect Induced by Intermolecular Motion. Angew Chem Int Ed Engl 2022; 61:e202204700. [DOI: 10.1002/anie.202204700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Shan‐Nan Du
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Dan Su
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Ze‐Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Ying‐Qian Zhou
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Wei Deng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Wei‐Xiong Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Young Sun
- Center of Quantum Materials and Devices, and Department of Applied Physics Chongqing University Chongqing 401331 P. R. China
| | - Jun‐Liang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Ming‐Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510006 P. R. China
| |
Collapse
|
14
|
Su SQ, Wu SQ, Huang YB, Xu WH, Gao KG, Okazawa A, Okajima H, Sakamoto A, Kanegawa S, Sato O. Photoinduced Persistent Polarization Change in a Spin Transition Crystal. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sheng-Qun Su
- Kyushu University: Kyushu Daigaku Institute for Materials Chemistry and Engineering 819-0395 Fukuoka JAPAN
| | - Shu-Qi Wu
- Kyushu University: Kyushu Daigaku Institute for Materials Chemistry and Engineering 819-0395 Fukuoka JAPAN
| | - Yu-Bo Huang
- Kyushu University: Kyushu Daigaku Institute for Materials Chemistry and Engineering 819-0395 Fukuoka JAPAN
| | - Wen-Huang Xu
- Kyushu University: Kyushu Daigaku Institute for Materials Chemistry and Engineering 819-0395 Fukuoka JAPAN
| | - Kai-Ge Gao
- Yangzhou University College of Physical Science and Technology 225009 Jiangsu CHINA
| | - Atsushi Okazawa
- Waseda University: Waseda Daigaku Department of Electrical Engineering and Bioscience 169-8555 Tokyo JAPAN
| | - Hajime Okajima
- Chuo University: Chuo Daigaku Faculty of Science and Engineering 112-8551 Tokyo JAPAN
| | - Akira Sakamoto
- Aoyama Gakuin University: Aoyama Gakuin Daigaku Graduate School of Science and Engineering 252-5258 sagamihara JAPAN
| | - Shinji Kanegawa
- Kyushu University: Kyushu Daigaku Institute for Materials Chemistry and Engineering and IRCCS 819-0395 Fukuoka JAPAN
| | - Osamu Sato
- Kyushu University Institute for Materials Chemistry and Engineering 744, Motooka, Nishi-ku 819-0395 Fukuoka JAPAN
| |
Collapse
|
15
|
Kumar B, Paul A, Mondal DJ, Paliwal P, Konar S. Spin-State Modulation in Fe II -Based Hofmann-Type Coordination Polymers: From Molecules to Materials. CHEM REC 2022; 22:e202200135. [PMID: 35815939 DOI: 10.1002/tcr.202200135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/21/2022] [Indexed: 11/05/2022]
Abstract
Spin crossover complexes that reversibly interconvert between two stable states imitate a binary state of 0 and 1, delivering a promising possibility to address the data processing concept in smart materials. Thus, a comprehensive understanding of the modulation of magnetic transition between high spin and low spin and the factors responsible for stabilizing the spin states is an essential theme in modern materials design. In this context, the present review attempts to provide a concise outline of the design strategy employed at the molecular level for fine-tuning the spin-state switching in FeII -based Hofmann-type coordination polymers and their effects on the optical and magnetic response. In addition, development towards the nanoscale architectures of HCPs, i. e., in terms of nanoparticles and thin films, are emphasized to bridge the gap between the laboratory and reality.
Collapse
Affiliation(s)
- Bhart Kumar
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Abhik Paul
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Dibya Jyoti Mondal
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Piyush Paliwal
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Sanjit Konar
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
16
|
Du SN, Su D, Ruan ZY, Zhou YQ, Deng W, Zhang WX, Sun Y, Liu JL, Tong ML. Reversible Switchability of Magnetic Anisotropy and Magnetodielectric Effect Induced by Intermolecular Motion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shan-Nan Du
- Sun Yat-Sen University School of Chemistry 510006 Guangzhou CHINA
| | - Dan Su
- Chinese Academy of Sciences Beijing National Laboratory for Condensed Matter Physics 100190 Beijing CHINA
| | - Ze-Yu Ruan
- Sun Yat-Sen University School of Chemistry 510006 Guangzhou CHINA
| | - Ying-Qian Zhou
- Sun Yat-Sen University School of Chemistry 510006 Guangzhou CHINA
| | - Wei Deng
- Sun Yat-Sen University School of Chemistry 510006 Guangzhou CHINA
| | - Wei-Xiong Zhang
- Sun Yat-Sen University School of Chemistry 510006 Guangzhou CHINA
| | - Young Sun
- Chongqing University Department of Applied Physics Chongqing CHINA
| | - Jun-Liang Liu
- Sun Yat-Sen University School of Chemistry A856, School of Chemistry, Guangzhou East Campus of Sun Yat-sen University 510006 Guangzhou CHINA
| | - Ming-Liang Tong
- Sun Yat-Sen University School of Chemistry 510006 Guangzhou CHINA
| |
Collapse
|
17
|
You M, Shao D, Deng YF, Yang J, Yao NT, Meng YS, Ungur L, Zhang YZ. [Au I(CN) 2]-Armed [Fe III2Fe II2] Square Complex Showing Unusual Spin-Crossover Behavior Due to a Symmetry-Breaking Phase Transition. Inorg Chem 2022; 61:5855-5860. [PMID: 35377631 DOI: 10.1021/acs.inorgchem.2c00192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The incorporation of two different cyanide building blocks of [(TpR)FeIII(CN)3]- and [AuI(CN)2]- into one molecule afforded a novel hexanuclear [FeIII2FeII2AuI2] complex (1·2Et2O), in which the cyanide-bridged [FeIII2FeII2] square was further grafted by two [AuI(CN)2]- fragments as long arms in syn orientations. Complex 1·2Et2O undergoes a gradual spin crossover (SCO) ffrom low-spin (LS) to high-spin (HS) state for the Fe(II) centers upon desolvation. Remarkably, its desolvated phase (1) exhibits a reversible but atypical two-step (sharp-gradual) SCO behavior with considerable hysteresis (21 K). Variable-temperature single-crystal X-ray structural studies reveal that the hysteretic spin transition takes place synchronously with the concerted displacive motions of the molecules, representing another rare example including multistep and hysteretic spin transitions due to the synergetic SCO and structural phase transition.
Collapse
Affiliation(s)
- Maolin You
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.,Department of Chemistry, National University of Singapore, Science Drive 3, Singapore 117543
| | - Dong Shao
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Jiong Yang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Nian-Tao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Liviu Ungur
- Department of Chemistry, National University of Singapore, Science Drive 3, Singapore 117543
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
18
|
Sun XP, Tang Z, Li J, Ma P, Yao ZS, Wang J, Niu J, Tao J. Discovery of Kinetic Effect in a Valence Tautomeric Cobalt-Dioxolene Complex. Inorg Chem 2022; 61:4240-4245. [PMID: 35234459 DOI: 10.1021/acs.inorgchem.1c03898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two isostructural valence tautomeric (VT) complexes with different critical temperatures were prepared and fully investigated through a series of magnetic, structural, spectral, and differential scanning calorimetry evidence. The kinetic effect in the VT complex was observed for the first time through scan-rate-dependent studies and further validated by annealing tests.
Collapse
Affiliation(s)
- Xiao-Peng Sun
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zheng Tang
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, China
| | - Jiajia Li
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jun Tao
- Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
19
|
Xie KP, Ruan ZY, Chen XX, Yang J, Wu SG, Ni ZP, Tong ML. Light-induced hidden multistability in a spin crossover metal-organic framework. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00037g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pursuit of spin crossover (SCO) materials with photo-switchable multistability is driven by the fascinating perspectives toward light-response switches and opto-magnetic memory devices. Herein, we report a 3D Hofmann-type metal...
Collapse
|
20
|
Xie Y, Lin R, Chen B. Old Materials for New Functions: Recent Progress on Metal Cyanide Based Porous Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104234. [PMID: 34825524 PMCID: PMC8728855 DOI: 10.1002/advs.202104234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Cyanide is the simplest ligand with strong basicity to construct open frameworks including some of the oldest compounds reported in the history of coordination chemistry. Cyanide can form numerous cyanometallates with different transition metal ions showing diverse geometries. Rational design of robust extended networks is enabled by the strong bonding nature and high directionality of cyanide ligand. By virtue of a combination of cyanometallates and/or organic linkers, multifunctional framework materials can be targeted and readily synthesized for various applications, ranging from molecular adsorptions/separations to energy conversion and storage, and spin-crossover materials. External guest- and stimuli-responsive behaviors in cyanide-based materials are also highlighted for the development of the next-generation smart materials. In this review, an overview of the recent progress of cyanide-based multifunctional materials is presented to demonstrate the great potential of cyanide ligands in the development of modern coordination chemistry and material science.
Collapse
Affiliation(s)
- Yi Xie
- Department of ChemistryUniversity of Texas at San AntonioOne UTSA CircleSan AntonioTX78249‐0698USA
| | - Rui‐Biao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistrySun Yat‐Sen UniversityGuangzhou510006China
| | - Banglin Chen
- Department of ChemistryUniversity of Texas at San AntonioOne UTSA CircleSan AntonioTX78249‐0698USA
| |
Collapse
|
21
|
Xie K, Ruan Z, Lyu B, Chen X, Zhang X, Huang G, Chen Y, Ni Z, Tong M. Guest‐Driven Light‐Induced Spin Change in an Azobenzene Loaded Metal–Organic Framework. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kai‐Ping Xie
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ze‐Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Bang‐Heng Lyu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xiao‐Xian Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xue‐Wen Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Guo‐Zhang Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yan‐Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Zhao‐Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ming‐Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
22
|
Xie KP, Ruan ZY, Lyu BH, Chen XX, Zhang XW, Huang GZ, Chen YC, Ni ZP, Tong ML. Guest-Driven Light-Induced Spin Change in an Azobenzene Loaded Metal-Organic Framework. Angew Chem Int Ed Engl 2021; 60:27144-27150. [PMID: 34676638 DOI: 10.1002/anie.202113294] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 12/30/2022]
Abstract
Stimuli-responsive materials that can be reversibly switched by light are of immense interest. Among them, photo-responsive spin crossover (SCO) complexes have great promises to combine the photoactive inputs with multifaceted outputs into switchable materials and devices. However, the reversible control the spin-state change by photochromic guests is still challenging. Herein, we report an unprecedented guest-driven light-induced spin change (GD-LISC) in a Hofmann-type metal-organic framework (MOF), [Fe(bpn){Ag(CN)2 }2 ]⋅azobenzene. (1, bpn=1,4-bis(4-pyridyl)naphthalene). The reversible trans-cis photoisomerization of azobenzene guest upon UV/Vis irradiation in the solid-state results in the remarkable magnetic changes in a wide temperature range of 10-180 K. This finding not only establishes a new switching mechanism for SCO complexes, but also paves the way toward the development of new generation of photo-responsive magnetic materials.
Collapse
Affiliation(s)
- Kai-Ping Xie
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Bang-Heng Lyu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xiao-Xian Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xue-Wen Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Guo-Zhang Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zhao-Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
23
|
Zhao L, Meng YS, Liu Q, Sato O, Shi Q, Oshio H, Liu T. Switching the magnetic hysteresis of an [Fe ii-NC-W v]-based coordination polymer by photoinduced reversible spin crossover. Nat Chem 2021; 13:698-704. [PMID: 34031565 DOI: 10.1038/s41557-021-00695-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/01/2021] [Indexed: 02/04/2023]
Abstract
Magnetic bistable materials that feature magnetic hysteresis are comparable to elementary binary units and promising for application in switches and memory devices. In this work, we report a material that consists of parallel cyanide-bridged [Feii-Wv] coordination chains linked together through rigid bis(imidazolyl)-benzene ligands and displays multiple magnetic states. The paramagnetic high-spin and diamagnetic low-spin states of the spin-crossover Feii ions can be interconverted by reversible light-induced excited spin state trapping (LIESST) by alternating between light irradiation of 808 and 473 nm. At 1.8 K, under 808-nm-light irradiation, magnetic interactions between the photogenerated paramagnetic high-spin Feii centres and the Wv centres lead to long fragments that exhibit single-chain magnet behaviour, with a wide magnetic hysteresis and a large coercive field of 19 kOe; under a 473 nm light, isolated Feii-Wv fragments behave as single-molecule magnets instead. At 3.3 K, the high-spin form still displays magnetic hysteresis, albeit narrower, whereas the low-spin one does not.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China.
| | - Qiang Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, Fukuoka, Japan
| | - Quan Shi
- Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Liaoning Province Key Laboratory of Thermochemistry for Energy and Materials, Dalian National Laboratory for Clean Energy, Dalian, China
| | - Hiroki Oshio
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China.
| |
Collapse
|
24
|
Turo-Cortés R, Valverde-Muñoz FJ, Meneses-Sánchez M, Muñoz MC, Bartual-Murgui C, Real JA. Bistable Hofmann-Type Fe II Spin-Crossover Two-Dimensional Polymers of 4-Alkyldisulfanylpyridine for Prospective Grafting of Monolayers on Metallic Surfaces. Inorg Chem 2021; 60:9040-9049. [PMID: 34047556 PMCID: PMC9129067 DOI: 10.1021/acs.inorgchem.1c01010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 12/02/2022]
Abstract
Aiming at investigating the suitability of Hofmann-type two-dimensional (2D) coordination polymers {FeII(Lax)2[MII(CN)4]} to be processed as single monolayers and probed as spin crossover (SCO) junctions in spintronic devices, the synthesis and characterization of the MII derivatives (MII = Pd and Pt) with sulfur-rich axial ligands (Lax = 4-methyl- and 4-ethyl-disulfanylpyridine) have been conducted. The thermal dependence of the magnetic and calorimetric properties confirmed the occurrence of strong cooperative SCO behavior in the temperature interval of 100-225 K, featuring hysteresis loops 44 and 32.5 K/21 K wide for PtII-methyl and PtII/PdII-ethyl derivatives, while the PdII-methyl derivative undergoes a much less cooperative multistep SCO. Excluding PtII-methyl, the remaining compounds display light-induced excited spin-state trapping at 10 K with TLIESST temperatures in the range of 50-70 K. Single-crystal studies performed in the temperature interval 100-250 K confirmed the layered structure and the occurrence of complete transformation between the high- and low-spin states of the FeII center for the four compounds. Strong positional disorder seems to be the source of elastic frustration driving the multistep SCO observed for the PdII-methyl derivative. It is expected that the peripheral disulfanyl groups will favor anchoring and growing of the monolayer on gold substrates and optimal electron transport in the device.
Collapse
Affiliation(s)
- Rubén Turo-Cortés
- Instituto
de Ciencia Molecular/Departamento de Química Inorgánica, Universidad de Valencia, Catedrático Beltrán Martínez
2, 46980 Paterna, Valencia Spain
| | - Francisco Javier Valverde-Muñoz
- Instituto
de Ciencia Molecular/Departamento de Química Inorgánica, Universidad de Valencia, Catedrático Beltrán Martínez
2, 46980 Paterna, Valencia Spain
| | - Manuel Meneses-Sánchez
- Instituto
de Ciencia Molecular/Departamento de Química Inorgánica, Universidad de Valencia, Catedrático Beltrán Martínez
2, 46980 Paterna, Valencia Spain
| | - M. Carmen Muñoz
- Departamento
de Física Aplicada, Universitat Politècnica
de València, Camino
de Vera S/N 46022 Valencia, Spain
| | - Carlos Bartual-Murgui
- Instituto
de Ciencia Molecular/Departamento de Química Inorgánica, Universidad de Valencia, Catedrático Beltrán Martínez
2, 46980 Paterna, Valencia Spain
| | - José Antonio Real
- Instituto
de Ciencia Molecular/Departamento de Química Inorgánica, Universidad de Valencia, Catedrático Beltrán Martínez
2, 46980 Paterna, Valencia Spain
| |
Collapse
|
25
|
Kucheriv OI, Fritsky IO, Gural'skiy IA. Spin crossover in FeII cyanometallic frameworks. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120303] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Xie KP, Wu SG, Wang LF, Huang GZ, Ni ZP, Tong ML. A spin-crossover phenomenon in a 2D heterometallic coordination polymer with [Pd(SCN) 4] 2- building blocks. Dalton Trans 2021; 50:4152-4158. [PMID: 33688869 DOI: 10.1039/d1dt00244a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new two-dimensional (2D) coordination polymers, [FeII(L)2{PdII(SCN)4}] (L1 = 3-(9-anthracenyl)-pyridine (1) and L2 = 4-(9-anthracenyl)-pyridine (2)), were constructed by employing square-planar [Pd(SCN)4]2- building blocks. Compound 1 exhibits a complete spin-crossover (SCO) behaviour under normal atmospheric pressure, and represents the first SCO example in a 2D system containing [Pd(SCN)4]2- units. In contrast, compound 2 only shows paramagnetic behaviour at measured temperatures. It is clear that the fine-tuning of the monodentate ligand can modulate the ligand field and packing fashions, which sheds light on developing new SCO materials.
Collapse
Affiliation(s)
- Kai-Ping Xie
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | | | | | | | | | | |
Collapse
|
27
|
Kuzevanova IS, Kucheriv OI, Hiiuk VM, Naumova DD, Shova S, Shylin SI, Kotsyubynsky VO, Rotaru A, Fritsky IO, Gural'skiy IA. Spin crossover in iron(II) Hofmann clathrates analogues with 1,2,3-triazole. Dalton Trans 2021; 50:9250-9258. [PMID: 34128522 DOI: 10.1039/d1dt01544c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hofmann-like cyanometallic complexes represent one of the biggest and well-known classes of FeII spin-crossover compounds. In this paper, we report on the first FeII Hofmann clathrate analogues with unsubstituted 1,2,3-triazole, which exhibit temperature induced spin transition. Two new coordination polymers with the general formula [FeII(1,2,3-triazole)2MII(CN)4] (M = Pt, Pd) undergo abrupt hysteretic spin crossover in the range of 190-225 K as revealed by magnetic susceptibility measurements. Two compounds are isostructural and are built of infinite cyanometallic layers which are supported by 1,2,3-triazole ligands. The thermal hysteresis loop is very stable at different scan rates from 0.5 to 10 K min-1. The compounds display strong thermochromic effect, changing their colour from pink in the low-spin state to white in the high-spin state. Our findings show that 1,2,3-triazole is suitable for elaboration of spin-crossover Hofmann clathrate analogues, and its use instead of more classical azines can advantageously expand this family of complexes.
Collapse
Affiliation(s)
- Iryna S Kuzevanova
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine. and Department of General and Inorganic Chemistry, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Peremogy Pr. 37, Kyiv 03056, Ukraine
| | - Olesia I Kucheriv
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine. and UkrOrgSyntez Ltd, Chervonotkatska St. 67, Kyiv 02094, Ukraine
| | - Volodymyr M Hiiuk
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine. and UkrOrgSyntez Ltd, Chervonotkatska St. 67, Kyiv 02094, Ukraine
| | - Dina D Naumova
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine.
| | - Sergiu Shova
- Department of Inorganic Polymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41-A, Iasi 700487, Romania
| | - Sergii I Shylin
- Department of Chemistry - Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Volodymyr O Kotsyubynsky
- Department of Material Science and New Technology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk 76018, Ukraine
| | - Aurelian Rotaru
- Faculty of Electrical Engineering and Computer Science &MANSiD Research Center, Stefan cel Mare University, Universitatii St. 13, Suceava 720229, Romania
| | - Igor O Fritsky
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine. and UkrOrgSyntez Ltd, Chervonotkatska St. 67, Kyiv 02094, Ukraine
| | - Il'ya A Gural'skiy
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine. and UkrOrgSyntez Ltd, Chervonotkatska St. 67, Kyiv 02094, Ukraine
| |
Collapse
|
28
|
Ouyang ZJ, Mo XY, Ye JQ, Yu XX, Huang SY, Liu XL, Chen WB, Gao S, Dong W. High temperature anionic Fe(III) spin crossover behavior in a mixed-valence Fe(II)/Fe(III) complex. Dalton Trans 2021; 50:5960-5967. [PMID: 33949504 DOI: 10.1039/d1dt00111f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two ion-pair Fe(iii) complexes (PPh4)[FeIII(HATD)2]·2H2O (1, H3ATD = azotetrazolyl-2,7-dihydroxynaphthalene) and [FeII(phen)3][FeIII(HATD)2]2·3DMA·3.5H2O (2, phen = 1,10-phenanthroline, DMA = N,N-dimethylformamide) were synthesized by employing the tridentate ligand H3ATD. Crystal structure analyses reveal that complexes 1 and 2 consist of FeIII ions in an octahedral environment where a FeIII ion is coordinated by two HATD2- ligands forming the [FeIII(HATD)2]- core. The shortest cationanion distance between the phosphorus ion of the (PPh4)+ cation and the ferric ion of the [FeIII(HATD)2]- anion is 13.190 Å in complex 1, whereas that between the ferrous ion of the [FeII(Phen)3]2+ cation and the ferric ion of the [FeIII(HATD)2]- anion is 7.821 Å in complex 2. C-HC and C-HO hydrogen interactions between the [FeII(phen)3]2+ cation and the [FeIII(HATD)2]- anion are observed in 2. Face-to-face π-π stacking interactions between naphthalene rings with the separated interplanar center to center distances of 3.421-3.680 Å were observed, which result in a one-dimensional supramolecular chain in complexes 1 and 2. Magnetic measurements show that complex 1 is in the low-spin (LS) state below 500 K, whereas 2 undergoes a high temperature spin crossover (SCO) between 360 and 500 K. Magneto-structural relationship studies reveal that π-stacking, hydrogen interactions and Coulomb interactions between the [FeIII(HATD)2]- anion and the [FeII(phen)3]2+ cation play a crucial role in the high temperature Fe(iii) SCO behaviour of complex 2.
Collapse
Affiliation(s)
- Zhi-Jian Ouyang
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Xiao-Ying Mo
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Jia-Qi Ye
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Xiao-Xuan Yu
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Shu-Yuan Huang
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Xiao-Ling Liu
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Wen-Bin Chen
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| | - Song Gao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Wen Dong
- Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.
| |
Collapse
|
29
|
Nakaya M, Ohtani R, Lindoy LF, Hayami S. Light-induced excited spin state trapping in iron(iii) complexes. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01188f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review discusses the correlation of the local and whole molecular structure of iron(iii) complexes with the magnetic properties including the light-induced excited spin-state trapping (LIESST) effect.
Collapse
Affiliation(s)
- Manabu Nakaya
- Department of Chemistry
- Faculty of Science
- Josai University
- Sakado
- Japan
| | - Ryo Ohtani
- Department of Chemistry
- Faculty of Science
- Kyushu University
- Fukuoka 819-0395
- Japan
| | | | - Shinya Hayami
- Department of Chemistry
- Faculty of Advanced Science and Technology
- Kumamoto University
- Kumamoto 860-8555
- Japan
| |
Collapse
|
30
|
Li Y, Kong QR, Guo Y, Tang Z. Thermal hysteresis induced by external pressure in a 3D Hofmann-type SCO-MOF. Dalton Trans 2021; 50:1384-1389. [DOI: 10.1039/d0dt03796f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Two 3D Hofmann-type compounds [FeII(dbdpe)MII(CN)4]·4H2O have been synthesized. The application of pressure on compound 1 shifted the transition temperature from 185 K to 298 K and led to a hysteresis loop of 13–25 K.
Collapse
Affiliation(s)
- Yue Li
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Qing-Rong Kong
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Ying Guo
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Zheng Tang
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Liangxiang Campus
- Beijing Institute of Technology
- Beijing 102488
| |
Collapse
|
31
|
Feng M, Ruan ZY, Chen YC, Tong ML. Physical stimulus and chemical modulations of bistable molecular magnetic materials. Chem Commun (Camb) 2020; 56:13702-13718. [DOI: 10.1039/d0cc04202a] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this Feature Article, we summarize the recent progress made in modulating the multifaceted magnetic behaviour of single-molecule magnets (SMMs) and spin-crossover (SCO) materials based on chemical modifications and external stimuli.
Collapse
Affiliation(s)
- Min Feng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|