1
|
Humphries J, Hobson-Peters J, Ghosh S, Howard CB, Huda P, Bell CA, Fletcher NL, Kempe K, Thurecht KJ. Multiplexing Label-Free Polymeric Nanocarriers via Antipolymer Antibodies. ACS Sens 2025. [PMID: 39884965 DOI: 10.1021/acssensors.4c03184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Recent examples of immune responses directed against the synthetic polymer poly(ethylene glycol) (PEG) have led to the development of biocompatible polymers, which are viewed as promising candidates to act as surrogate materials for use in biological applications, such as hydrophilic poly(2-oxazoline)s (POx). Despite this, the characterization of critical aspects of the immune response against these emerging materials is sparse, in part because no known monoclonal antibodies (mAbs) against this family of synthetic material have been reported. To advance the understanding of such responses, we report the successful isolation and characterization of hybridoma-derived mAbs with excellent specificity for different POx species and notable selectivity for highly branched polymer architectures over linear systems. In conjunction with established mAbs targeted against PEG, we show that these antibodies can be employed for sensitive in vivo multiplex-detection of label-free polymer therapeutics based on the specificity of the polymer-antibody binding. This approach enables scalable therapeutic drug monitoring of multiple polymer therapeutics within a single animal, simultaneously.
Collapse
Affiliation(s)
- James Humphries
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Brisbane 4072, 4029, Australia
| | - Saikat Ghosh
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Christopher B Howard
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Pie Huda
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Craig A Bell
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
2
|
Keane DP, Kolozsvary T, McDonald B, Poling-Skutvik R. Bottlebrush Midblocks Promote Colloidal Bridging of Telechelic Polymers. ACS Macro Lett 2024; 13:1304-1310. [PMID: 39284301 DOI: 10.1021/acsmacrolett.4c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Telechelic polymers are effective rheological modifiers that bridge between associative constituents to form elastic networks. The performance of linear telechelic chains, however, is controlled by entropic forces and thus suffers from an upper limit on bridge formation. This work overcomes this limitation by utilizing telechelic triblock copolymers containing bottlebrush midblocks. By comparing the rheological properties of emulsions linked by telechelic bottlebrush polymers to those containing linear chains, we determined that telechelic polymers with bottlebrush midblocks form elastic networks more efficiently. These enhanced rheological properties arise from the high stiffness of the bottlebrush midblocks, which offsets the entropic stretching penalty for bridge formation, enabling them to more readily form networks. This molecular-level control over polymer conformation in complex fluids opens avenues for designing highly elastic networks with minimal polymeric additives.
Collapse
Affiliation(s)
- Daniel P Keane
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Timea Kolozsvary
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Benjamin McDonald
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Ryan Poling-Skutvik
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
3
|
Elardo MJ, Levenson AM, Kitos Vasconcelos AP, Pomfret MN, Golder MR. A general synthesis of cyclic bottlebrush polymers with enhanced mechanical properties via graft-through ring expansion metathesis polymerization. Chem Sci 2024; 15:d4sc06050d. [PMID: 39360007 PMCID: PMC11440813 DOI: 10.1039/d4sc06050d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Bottlebrush polymers represent an important class of macromolecular architectures, with applications ranging from drug delivery to organic electronics. While there is an abundance of literature describing the synthesis, structure, and applications of linear bottlebrush polymers using ring-opening metathesis polymerization (ROMP), there are comparatively less reports on their cyclic counterparts. This lack of research is primarily due to the difficulty in synthesizing cyclic bottlebrush polymers, as extensions of typical routes towards linear bottlebrush polymers (i.e., "grafting-through" polymerizations of macromonomers with ROMP) produce only ultrahigh molar mass cyclic bottlebrush polymers with poor molar mass control. Herein, we report a ring-expansion metathesis polymerization (REMP) approach to cyclic bottlebrush polymers via a "grafting-through" approach utilizing the active pyr-CB6 initiator developed in our lab. The resulting polymers, characterized via GPC-MALS-IV, are shown to have superior molar mass control across a range of target backbone lengths. The cyclic materials are also found to have superior mechanical properties when compared to their linear counterparts, as assessed by ball-mill grinding and compression testing experiments.
Collapse
Affiliation(s)
- Matthew J Elardo
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| | - Adelaide M Levenson
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| | - Ana Paula Kitos Vasconcelos
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| | - Meredith N Pomfret
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| | - Matthew R Golder
- Department of Chemistry, Molecular Engineering & Science Institute, University of Washington 36 Bagley Hall Seattle WA 98195 USA
| |
Collapse
|
4
|
Basak S, Chatterjee R, Bandyopadhyay A. Beyond Traditional Stimuli: Exploring Salt-Responsive Bottlebrush Polymers-Trends, Applications, and Perspectives. ACS OMEGA 2024; 9:33365-33385. [PMID: 39130571 PMCID: PMC11308035 DOI: 10.1021/acsomega.4c06137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/13/2024]
Abstract
Bottlebrush polymers represent an important class of high-density side-chain-grafted polymers traditionally with high molecular weights, in which one or more polymeric side chains are tethered to each repeating unit of a linear polymer backbone, such that these macromolecules look like "bottlebrushes". The arrangement of molecular brushes is determined by side chains located at a distance considerably smaller than their unperturbed dimensions, leading to substantial monomer congestion and entropically unfavorable extension of both the backbone and the side chains. Traditionally, the conformation and physical properties of polymers are influenced by external stimuli such as solvent, temperature, pH, and light. However, a unique stimulus, salt, has recently gained attention as a means to induce shape changes in these molecular brushes. While the stimulus has been less researched to date, we see that these systems, when stimulated with salts, have the potential to be used in various engineering applications. This potential stems from the unique properties and behaviors these systems show when exposed to different salts, which could lead to new solutions and improvements in engineering processes, thus serving as the primary motivation for this narrative, as we aim to explore and highlight the various ways these systems can be utilized and the benefits they could bring to the field of engineering. This Review aims to introduce the concept of stimuli-responsive bottlebrush polymers, explore the evolutionary trajectory, delve into current trends in salt-responsive bottlebrush polymers, and elucidate how these polymers are addressing a variety of engineering challenges.
Collapse
Affiliation(s)
- Sayan Basak
- Department of Polymer Science
and Technology, University of Calcutta, 92, A.P.C Road, Kolkata 700 009, West
Bengal, India
| | - Rahul Chatterjee
- Department of Polymer Science
and Technology, University of Calcutta, 92, A.P.C Road, Kolkata 700 009, West
Bengal, India
| | - Abhijit Bandyopadhyay
- Department of Polymer Science
and Technology, University of Calcutta, 92, A.P.C Road, Kolkata 700 009, West
Bengal, India
| |
Collapse
|
5
|
Kunkel G, Zhou Q, Treacy JW, Montgomery HR, Salas-Ambrosio P, Ready AD, Spokoyny AM, Houk KN, Maynard HD. Comparison of Cyclic and Linear PEG Conjugates. Bioconjug Chem 2024; 35:744-749. [PMID: 38809040 PMCID: PMC11191396 DOI: 10.1021/acs.bioconjchem.4c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Bioconjugation of polymers to proteins is a method to impart improved stability and pharmacokinetic properties to biologic systems. However, the precise effects of polymer architecture on the resulting bioconjugates are not well understood. Particularly, cyclic polymers are known to possess unique features such as a decreased hydrodynamic radius when compared to their linear counterparts of the same molecular weight, but have not yet been studied. Here, we report the first bioconjugation of a cyclic polymer, poly(ethylene glycol) (PEG), to a model protein, T4 lysozyme, containing a single engineered cysteine residue (V131C). We compare the stability and activity of this conjugate with those of a linear PEG-T4 lysozyme analogue of similar molecular weight. Furthermore, we used molecular dynamics (MD) simulations to determine the behavior of the polymer-protein conjugates in solution. We introduce cyclic polymer-protein conjugates as potential candidates for the improvement of biologic therapeutics.
Collapse
Affiliation(s)
- Grace
E. Kunkel
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Qingyang Zhou
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Joseph W. Treacy
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hayden R. Montgomery
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Pedro Salas-Ambrosio
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Austin D. Ready
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Alexander M. Spokoyny
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Kendall N. Houk
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Heather D. Maynard
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
6
|
Jin Z, Seong HG, Srivastava S, McGlasson A, Emrick T, Muthukumar M, Russell TP. 3D Printing of Aqueous Two-Phase Systems with Linear and Bottlebrush Polyelectrolytes. Angew Chem Int Ed Engl 2024; 63:e202404382. [PMID: 38616164 DOI: 10.1002/anie.202404382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
We formed core-shell-like polyelectrolyte complexes (PECs) from an anionic bottlebrush polymer with poly (acrylic acid) side chains with a cationic linear poly (allylamine hydrochloride). By varying the pH, the number of side chains of the polyanionic BB polymers (Nbb), the charge density of the polyelectrolytes, and the salt concentration, the phase separation behavior and salt resistance of the complexes could be tuned by the conformation of the BBs. By combining the linear/bottlebrush polyelectrolyte complexation with all-liquid 3D printing, flow-through tubular constructs were produced that showed selective transport across the PEC membrane comprising the walls of the tubules. These tubular constructs afford a new platform for flow-through delivery systems.
Collapse
Affiliation(s)
- Zichen Jin
- Department of Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Hong-Gyu Seong
- Department of Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Satyam Srivastava
- Department of Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Alex McGlasson
- Department of Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Todd Emrick
- Department of Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Murugappan Muthukumar
- Department of Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Department of Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| |
Collapse
|
7
|
Leo CM, Jang J, Corey EJ, Neary WJ, Bowman JI, Kennemur JG. Comparison of Polypentenamer and Polynorbornene Bottlebrushes in Dilute Solution. ACS POLYMERS AU 2024; 4:235-246. [PMID: 38882033 PMCID: PMC11177302 DOI: 10.1021/acspolymersau.3c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 06/18/2024]
Abstract
Bottlebrush (BB) polymers were synthesized via grafting-from-atom transfer radical polymerization (ATRP) of styrene on polypentenamer and polynorbornene macroinitiators with matched grafting density (n g = 4) and backbone degrees of polymerization (122 ≥ N bb ≥ 61) to produce a comparative study on their respective dilute solution properties as a function of increasing side chain degree of polymerization (116 ≥ N sc ≥ 5). The grafting-from technique produced near quantitative grafting efficiency and narrow dispersity N sc as evidenced by spectroscopic analysis and ring closing metathesis depolymerization of the polypentenamer BBs. The versatility of this synthetic approach permitted a comprehensive survey of power law expressions that arise from monitoring intrinsic viscosity, hydrodynamic radius, and radius of gyration as a function of increasing the molar mass of the BBs by increasing N sc. These values were compared to a series of linear (nongrafted, N sc = 0) macroinitiators in addition to linear grafts. This unique study allowed elucidation of the onset of bottlebrush behavior for two different types of bottlebrush backbones with identical grafting density but inherently different flexibility. In addition, grafting-from ATRP of methyl acrylate on a polypentenamer macroinitiator allowed the observation of the effects of graft chemistry in comparison to polystyrene. Differences in the observed scaling relationships in dilute solution as a function of each of these synthetic variants are discussed.
Collapse
Affiliation(s)
- Courtney M Leo
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32303, United States
| | - Jaehoon Jang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32303, United States
| | - Ethan J Corey
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32303, United States
| | - William J Neary
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Jared I Bowman
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Justin G Kennemur
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32303, United States
| |
Collapse
|
8
|
Clarke BR, Witt CL, Ilton M, Crosby AJ, Watkins JJ, Tew GN. Bottlebrush Networks: A Primer for Advanced Architectures. Angew Chem Int Ed Engl 2024; 63:e202318220. [PMID: 38588310 PMCID: PMC11634236 DOI: 10.1002/anie.202318220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Bottlebrush networks (BBNs) are an exciting new class of materials with interesting physical properties derived from their unique architecture. While great strides have been made in our fundamental understanding of bottlebrush polymers and networks, an interdisciplinary approach is necessary for the field to accelerate advancements. This review aims to act as a primer to BBN chemistry and physics for both new and current members of the community. In addition to providing an overview of contemporary BBN synthetic methods, we developed a workflow and desktop application (LengthScale), enabling bottlebrush physics to be more approachable. We conclude by addressing several topical issues and asking a series of pointed questions to stimulate conversation within the community.
Collapse
Affiliation(s)
- Brandon R. Clarke
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Connor L. Witt
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Mark Ilton
- Department of Physics, Harvey Mudd College, Claremont, CA 91711, United States
| | - Alfred J. Crosby
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - James J. Watkins
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Gregory N. Tew
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
9
|
Seong HG, Jin Z, Chen Z, Hu M, Emrick T, Russell TP. Bottlebrush Block Copolymers at the Interface of Immiscible Liquids: Adsorption and Lateral Packing. J Am Chem Soc 2024; 146:13000-13009. [PMID: 38710503 DOI: 10.1021/jacs.3c13817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Amphiphilic bottlebrush block copolymers (BBCPs), having a hydrophilic bottlebrush polymer (BP) linked covalently to a hydrophobic BP, were found to segregate to liquid-liquid interfaces to minimize the free energy of the system. The key parameter influencing the outcome of the experiments is the ratio between the degree of polymerization of the backbone (NBB) and that of the side-chain brushes (NSC). Specifically, a spherical, star-like configuration results when NBB < NSC, while a cylindrical, bottlebrush-like shape is preferred when NBB > NSC. Dynamic interfacial tension (γ) and fluorescence recovery after photobleaching (FRAP) measurements show that the BBCP configuration influences the areal density and in-plane diffusion at the fluid interface. The characteristic relaxation times associated with BBCP adsorption (τA) and reorganization (τR) were determined by fitting time-dependent interfacial tension measurements to a sum of two exponential relaxation functions. Both τA and τR initially increased with NBB up to 92 repeat units, due to the larger hydrodynamic radius in solution and slower in-plane diffusivity, attributed to a shorter cross-sectional diameter of the side-chains near the block junction. This trend reversed at NBB = 190, with shorter τA and τR attributed to increased segregation strength and exposure of the bare water/toluene interface due to tilting and/or wiggling of the backbone chains, respectively. The adsorption energy barrier decreased with higher NBB, due to a reduced BBCP packing density at the fluid interface. This study provides fundamental insights into macromolecular assembly at fluid interfaces, as it pertains to unique bottlebrush block architectures.
Collapse
Affiliation(s)
- Hong-Gyu Seong
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Zichen Jin
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Zhan Chen
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Mingqiu Hu
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Todd Emrick
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Thomas P Russell
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Chen Z, Seong HG, Hu M, Gan X, Ribbe AE, Ju J, Wang H, Doucet M, Emrick T, Russell TP. Janus bottlebrush compatibilizers. SOFT MATTER 2024; 20:1554-1564. [PMID: 38270211 DOI: 10.1039/d3sm01484c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Bottlebrush random copolymers (BRCPs), consisting of a random distribution of two homopolymer chains along a backbone, can segregate to the interface between two immiscible homopolymers. BRCPs undergo a reconfiguration, where each block segregates to one of the homopolymer phases, adopting a Janus-type structure, reducing the interfacial tension and promoting adhesion between the two homopolymers, thereby serving as a Janus bottlebrush copolymer (JBCP) compatibilizer. We synthesized a series of JBCPs by copolymerizing deuterated or hydrogenated polystyrene (DPS/PS) and poly(tert-butyl acrylate) (PtBA) macromonomers using ruthenium benzylidene-initiated ring-opening metathesis polymerization (ROMP). Subsequent acid-catalyzed hydrolysis converted the PtBA brushes to poly(acrylic acid) (PAA). The JBCPs were then placed at the interface between DPS/PS homopolymers and poly(2-vinyl pyridine) (P2VP) homopolymers, where the degree of polymerization of the backbone (NBB) and the grafting density (GD) of the JBCPs were varied. Neutron reflectivity (NR) was used to determine the interfacial width and segmental density distributions (including PS homopolymer, PS block, PAA block and P2VP homopolymer) across the polymer-polymer interface. Our findings indicate that the star-like JBCP with NBB = 6 produces the largest interfacial broadening. Increasing NBB to 100 (rod-like shape) and 250 (worm-like shape) reduced the interfacial broadening due to a decrease in the interactions between blocks and homopolymers by stretching of blocks. Decreasing the GD from 100% to 80% at NBB = 100 caused an increase the interfacial width, yet further decreasing the GD to 50% and 20% reduced the interfacial width, as 80% of GD may efficiently increase the flexibility of blocks and promote interactions between homopolymers, while maintaining relatively high number of blocks attached to one molecule. The interfacial conformation of JBCPs was further translated into compatibilization efficiency. Thin film morphology studies showed that only the lower NBB values (NBB = 6 and NBB = 24) and the 80% GD of NBB = 100 had bicontinuous morphologies, due to a sufficient binding energy that arrested phase separation, supported by mechanical testing using asymmetric double cantilever beam (ADCB) tests. These provide fundamental insights into the assembly behavior of JBCPs compatibilizers at homopolymer interfaces, opening strategies for the design of new BCP compatibilizers.
Collapse
Affiliation(s)
- Zhan Chen
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Hong-Gyu Seong
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Mingqiu Hu
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Xuchen Gan
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Alexander E Ribbe
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Jaechul Ju
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hanyu Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Mathieu Doucet
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Todd Emrick
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Thomas P Russell
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 37831, USA
| |
Collapse
|
11
|
Akash TS, Ishraaq R, Das S. All-Atom Molecular Dynamics Simulations of Uncharged Linear Polymer Bottlebrushes: Effect of the Brush Sizes and the Number of Side-Chain Monomers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38295136 DOI: 10.1021/acs.langmuir.3c03043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Bottlebrush polymers (BBPs), characterized by grafted polymer side chains on linear backbone polymer chain, have emerged as a unique and versatile class of macromolecules with extensive applications in the fields of material science, electronics, battery materials, self-healing technology, etc. In this paper, we employ all-atom molecular dynamics (MD) simulations to present a comprehensive study of poly(methyl methacrylate)-g-poly(2-ethyl-2-oxazoline) (PMMA-g-PEtOx) BBP and its structural and hydration properties for varying number of backbone monomers (NBB) and side chain monomers (NSC), as well as properties of water molecules supported by the BBP. We find that the radius of gyration follows a scaling of Rg ∼NSC0.36 for smaller grafts and Rg ∼ NSC0.52-0.58 for longer grafts. We also find that the overall shape of the bottlebrush goes from a rod to sphere-like shape with the increase in NSC. Both the hydration per side chain monomer and hydrogen bonds (HBs) per oxygen and nitrogen of the side chain monomer reduce with an increase in NSC, caused by a corresponding enhancement in localization of the side chain monomers in the interior of the BBP. Furthermore, steric influences ensure the number of water-oxygen HBs is much more than the number of water-nitrogen HBs (with oxygen and nitrogen atoms belonging to the monomer side chains). Also, the BBP-supported water molecules demonstrate two distinctly ordered domains with one more structured and one less structured. The more structured domain disappears with an increase in NSC that causes more side chain monomers to localize in the interior of the BBPs. Finally, we observe that despite the highly negative partial charges of the oxygen and nitrogen atoms (of the side chain monomers), the dipole orientation distributions of water molecules around these atoms exhibit the presence of a neutral environment rather than an anionic environment. Overall, we anticipate that our study will generate significant interest in probing the various BBP systems in greater atomistic detail.
Collapse
Affiliation(s)
- Tanmay Sarkar Akash
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Raashiq Ishraaq
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
12
|
Dutta S, Sing CE. Brownian dynamics simulations of bottlebrush polymers in dilute solution under simple shear and uniaxial extensional flows. J Chem Phys 2024; 160:044901. [PMID: 38258921 DOI: 10.1063/5.0177113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
We study the dynamics of bottlebrush polymer molecules in dilute solutions subjected to shear and uniaxial extensional flows using Brownian dynamics simulations with hydrodynamic interaction (HI). Bottlebrush polymers are modeled using a coarse-grained representation, consisting of a set of beads interacting pairwise via a purely repulsive potential and connected by finitely extensible nonlinear springs. We present the results for molecular stretching, stress, and solution viscosity during the startup of flow as well as under steady state as a function of side chain length while keeping the backbone length fixed. In extensional flow, the backbone fractional extension and the first normal stress difference decrease with an increase in side chain length at a fixed Weissenberg number (Wi). Using simulation results both in the presence of and in the absence of HI, we show that this is primarily a consequence of steric interaction resulting from the dense grafting of side chains. In shear flow, we observe a shear-thinning behavior in all cases, although it becomes less pronounced with increasing side chain length. Furthermore, nonmonotonicity in the backbone fractional extension is observed under shear, particularly at high Wi. We contextualize our simulation results for bottlebrush polymers with respect to existing studies in the literature for linear polymers and show that the unique dynamical features characterizing bottlebrush polymers arise on account of their additional molecular thickness due to the presence of densely grafted side chains.
Collapse
Affiliation(s)
- Sarit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, Illinois 61801, USA
| | - Charles E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, Illinois 61801, USA
| |
Collapse
|
13
|
Zhu M, Pan X, Zheng T, Li L. Research progress on the conformational properties of comb-like polymers in dilute solutions. SOFT MATTER 2024; 20:463-483. [PMID: 38167904 DOI: 10.1039/d3sm01102j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
As a special type of branched polymers, comb-like polymers simultaneously possess the structural characteristics of a linear backbone profile and crowded sidechain branches/grafts, and such structural uniqueness leads to reduced interchain entanglement, enhanced molecular orientation, and unique stimulus-response behavior, which greatly expands the potential applications in the fields of super-soft elastomers, molecular sensors, lubricants, photonic crystals, etc. In principle, all these molecular features can be traced back to three structural parameters, i.e., the degree of polymerization of the backbone (Nb), the degree of polymerization of the graft sidechain (Ng), and the grafting density (σ). Consequently, it is of great importance to understand the correlation mechanism between the structural characteristics and physicochemical properties, among which, the conformational properties in dilute solution have received the most attention due to its central position in polymer science. In the past decades, the development of synthetic chemistry and characterization techniques has greatly stimulated the progress of this field, and a number of experiments have been executed to verify the conformational properties; however, due to the complexity of the structural parameters and the diversity of the chemical design, the achieved experimental progress displays significant controversies compared with the theoretical predictions. This review aims to provide a full picture of recent research progress on this topic, specifically, (1) first, a few classical theoretical models regarding the chain conformation are introduced, and the quasi-two-parameter (QTP) theory for the conformation analysis is highlighted; (2) second, the research progress of the static conformation of comb-like polymers in dilute solution is discussed; (3) third, the research progress of the dynamic conformation in dilute solution is further discussed. The key issues, existing controversies and future research directions are also highlighted. We hope that this review can provide insightful information for the understanding of the conformational properties of comb-like polymers, open a new door for the regulation of conformational behavior in related applications, and promote related theoretical and experimental research in the community.
Collapse
Affiliation(s)
- Mo Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xuejun Pan
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China.
| | - Tao Zheng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lianwei Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
14
|
Salinas-Soto CA, Choe Y, Hur SM, Ramírez-Hernández A. Exploring conformations of comb-like polymers with varying grafting density in dilute solutions. J Chem Phys 2023; 159:114901. [PMID: 37712792 DOI: 10.1063/5.0160824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Comb-like polymers have shown potential as advanced materials for a diverse palette of applications due to the tunability of their polymer architecture. To date, however, it still remains a challenge to understand how the conformational properties of these polymers arise from the interplay of their architectural parameters. In this work, extensive simulations were performed using dissipative particle dynamics to investigate the effect of grafting density, backbone length, and sidechain length on the conformations of comb-like polymers immersed in a good solvent. To quantify the effect of these architectural parameters on polymer conformations, we computed the asphericity, radius of gyration, and backbone and sidechain end-to-end distances. Bond-bond correlation functions and effective Kuhn lengths were computed to quantify the topological stiffness induced by sidechain-sidechain interactions. Simulation results reveal that the effective Kuhn length increases as grafting density and sidechain length increase, in agreement with previous experimental and theoretical studies. This increase in stiffness results in comb-like polymers adopting extended conformations as grafting density and sidechain length increase. Simulation results regarding the radius of gyration of comb-like polymers as a function of grafting density are compared with scaling theory predictions based on a free energy proposed by Morozova and Lodge [ACS Macro Lett. 6, 1274-1279 (2017)] and scaling arguments by Tang et al. [Macromolecules 55, 8668-8675 (2022)].
Collapse
Affiliation(s)
- Carlos A Salinas-Soto
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Yeojin Choe
- Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Su-Mi Hur
- Department of Polymer Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Abelardo Ramírez-Hernández
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| |
Collapse
|
15
|
Seong HG, Fink Z, Chen Z, Emrick T, Russell TP. Bottlebrush Polymers at Liquid Interfaces: Assembly Dynamics, Mechanical Properties, and All-Liquid Printed Constructs. ACS NANO 2023. [PMID: 37490585 DOI: 10.1021/acsnano.3c02684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Bottlebrush polymer surfactants (BPSs), formed by the interfacial interactions between bottlebrush polymers (BPs) with poly(acrylic acid) side chains dissolved in an aqueous phase and amine-functionalized ligands dissolved in the oil phase, assemble and bind strongly to the fluid-fluid interface. The ratio between NBB (backbone degree of polymerization) and NSC (side chain degree of polymerization) defines the initial assembly kinetics, interface packing efficiency, and stress relaxation. The equilibrium interfacial tension (γ) increases when NBB < NSC, but decreases when NBB ≫ NSC, correlating to a pronounced change in the effective shape of the BPs from being spherical to worm-like structures. The apparent surface coverage (ASC), i.e., the interfacial packing efficiency, decreases as NBB increases. The dripping-to-jetting transition of an injected polymer solution, as well as fluorescence recovery after photobleaching experiments, revealed faster initial assembly kinetics for BPs with higher NBB. Euler buckling of BPS assemblies with different NBB values was used to characterize the stress relaxation behavior and bending modulus. The stress relaxation behavior was directly related to the ASC, reflecting the strong influence of macromolecular shape on packing efficiency. The bending modulus of BPSs decreases for NBB < NSC, but increased when NBB ≫ NSC, showing the effect of molecular architecture and multisite anchoring. All-liquid printed constructs with lower NBB BPs yielded more stable structured liquids, underscoring the importance of macromolecular packing efficiency at fluid interfaces. Overall, this work elucidates fundamental relationships between nanoscopic structures and macroscopic properties associated with various bottlebrush polymer architectures, which translate to the stabilization of all-fluidic printed constructs.
Collapse
Affiliation(s)
- Hong-Gyu Seong
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Zachary Fink
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zhan Chen
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Todd Emrick
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Thomas P Russell
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
16
|
Mai X, Hao P, Liu D, Ding M. Conformation of a Comb-like Chain in Solution: Effect of Backbone Rigidity. ACS OMEGA 2023; 8:11177-11183. [PMID: 37008139 PMCID: PMC10061535 DOI: 10.1021/acsomega.2c08018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
We study the effect of backbone rigidity on the conformation of comb-like chains in dilute solution by using Brownian dynamics simulations. Our results demonstrate that the backbone rigidity can control the effect of side chains on the conformation of comb-like chains; that is, the relative strength of the excluded-volume interactions from backbone monomer-graft and graft-graft to backbone monomer-monomer gradually weakens with the increase of backbone rigidity. Only when the rigidity of the backbone tends to be flexible and the grafting density is high is the effect of excluded volume of graft-graft on the conformation of comb-like chains significant enough, and other cases can be ignored. Our results show that the radius of gyration of comb-like chains and the persistence length of the backbone are exponentially related to the stretching factor, where the power exponent exhibits an increase with the increase of the strength of bending energy. These finds provide new insights for characterizing the structure properties of comb-like chains.
Collapse
Affiliation(s)
- Xinghong Mai
- Xinjiang
Laboratory of Phase Transitions and Microstructures in Condensed Matter
Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, P.R. China
| | - Peng Hao
- Xinjiang
Laboratory of Phase Transitions and Microstructures in Condensed Matter
Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, P.R. China
| | - Danfeng Liu
- Xinjiang
Laboratory of Phase Transitions and Microstructures in Condensed Matter
Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, P.R. China
| | - Mingming Ding
- Xinjiang
Laboratory of Phase Transitions and Microstructures in Condensed Matter
Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, P.R. China
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China
| |
Collapse
|
17
|
Hao P, Mai XH, Chen QY, Ding MM. Conformation of an Amphiphilic Comb-like Copolymer in a Selective Solvent. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Loose Semirigid Aromatic Polyester Bottle Brushes at Poly(2-isopropyl-2-oxazoline) Side Chains of Various Lengths: Behavior in Solutions and Thermoresponsiveness. Polymers (Basel) 2022; 14:polym14245354. [PMID: 36559721 PMCID: PMC9781464 DOI: 10.3390/polym14245354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
A polycondensation aromatic polyester with an oxygen spacer was synthesized and used as a macroinitiator for the grafting of linear poly(2-isopropyl-2-oxazoline) (PiPrOx) by the cationic polymerization method. The length of the thermosensitive side chains was varied by the initiator:monomer ratio. Using methods of molecular hydrodynamics, light scattering and turbidimetry, the copolymers were studied in organic solvents and in water. The molecular characteristics of the main chain and graft copolymers, the polymerization degree of side chains and their grafting density have been determined. The equilibrium rigidity of the macroinitiator and the conformations of grafted macromolecules were evaluated. In selective solvents, they take on a star-like conformation or aggregate depending on the degree of shielding of the main chain by side chains. The thermoresponsiveness of graft copolymers in aqueous solutions was studied, and their LCST were estimated. The results are compared with data for graft copolymers composed of PiPrOx side chains and flexible or rigid chain backbones of aromatic polyester type.
Collapse
|
19
|
Kravchenko VS, Gumerov RA, Papadakis CM, Potemkin II. Self-Assembly of Molecular Brushes with Responsive Alternating Copolymer Side Chains. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vitaly S. Kravchenko
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Rustam A. Gumerov
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation
| | - Christine M. Papadakis
- Fachgebiet Physik weicher Materie, Physik-Department, Technische Universität München, James-Franck-Straße 1, Garching 85748, Germany
| | - Igor I. Potemkin
- Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation
- National Research South Ural State University, Chelyabinsk 454080, Russian Federation
| |
Collapse
|
20
|
The structure and dynamics of bottlebrushes: Simulation and experimental studies combined. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Bichler KJ, Jakobi B, Honecker D, Stingaciu LR, Weldeghiorghis TK, Collins JHP, Schneider GJ. Dynamics of Bottlebrush Polymers in Solution by Neutron Spin Echo Spectroscopy. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Karin J. Bichler
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana70803, United States
| | - Bruno Jakobi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana70803, United States
| | - Dirk Honecker
- ISIS Facility, Rutherford Appleton Laboratory, DidcotOX11 0QX, United Kingdom
| | - Laura R. Stingaciu
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | | | - James H. P. Collins
- National High Magnetic Field Laboratory and Biology and McKnight Brain Institute, University of Florida, Box 100015, Gainesville, Florida32610-0015, United States
| | - Gerald J. Schneider
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana70803, United States
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana70803, United States
| |
Collapse
|
22
|
Qu J, Chen Q, Huang W, Zhang L, Liu J. Dispersion and Diffusion Mechanism of Nanofillers with Different Geometries in Bottlebrush Polymers: Insights from Molecular Dynamics Simulation. J Phys Chem B 2022; 126:7761-7770. [PMID: 36169228 DOI: 10.1021/acs.jpcb.2c04389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dispersion and diffusion mechanism of nanofillers in polymer nanocomposites (PNCs) are crucial for understanding the properties of PNCs, which is of great significance for the design of novel materials. Herein, we investigate the dispersion and diffusion behavior of two geometries of nanofillers, namely, spherical nanoparticles (SNPs) and nanorods (NRs), in bottlebrush polymers by utilizing coarse-grained molecular dynamics simulations. With the increase of the interaction strength between the nanofiller and polymer (εnp), both the SNPs and NRs experience a typical "aggregated phase-dispersed phase-bridged phase" state transition in the bottlebrush polymer matrix. We evaluate the validity of the Stokes-Einstein (SE) equation for predicting the diffusion coefficient of nanofillers in bottlebrush polymers. The results demonstrate that the SE predictions are slightly larger than the simulated values for small SNP sizes because the local viscosity that is felt by small SNPs in the densely grafted bottlebrush polymer does not differ much from the macroscopic viscosity. The relative size of the length of the NRs (L) and the radius of gyration (Rg) of the bottlebrush polymer play a key role in the diffusion of NRs. In addition, we characterize the anisotropic diffusion of NRs to analyze their translational and rotational diffusion. The motion of NRs in the direction perpendicular to the end-to-end vector is more hindered, indicating that there is a strong coupling between the rotation of NRs and the motion of the polymer. The NR motion shows stronger anisotropic diffusion at short time scales because of the steric effects generated by side chains of the bottlebrush polymer. In general, our results provide a fundamental understanding of the dispersion of nanofillers and the microscopic mechanism of nanofiller diffusion in bottlebrush polymers.
Collapse
Affiliation(s)
- Jiajun Qu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Qionghai Chen
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Wanhui Huang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
23
|
Tang Z, Pan X, Zhou H, Li L, Ding M. Conformation of a Comb-like Chain Free in Solution and Confined in a Nanochannel: From Linear to Bottlebrush Structure. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zengxian Tang
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, P. R. China
| | - Xuejun Pan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hengwei Zhou
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, P. R. China
| | - Lianwei Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Mingming Ding
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, P. R. China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
24
|
Park J, Thapar V, Choe Y, Padilla Salas LA, Ramírez-Hernández A, de Pablo JJ, Hur SM. Coarse-Grained Simulation of Bottlebrush: From Single-Chain Properties to Self-Assembly. ACS Macro Lett 2022; 11:1167-1173. [DOI: 10.1021/acsmacrolett.2c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juhae Park
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Vikram Thapar
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
| | - Yeojin Choe
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
| | | | - Abelardo Ramírez-Hernández
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Su-Mi Hur
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
25
|
Patel BB, Pan T, Chang Y, Walsh DJ, Kwok JJ, Park KS, Patel K, Guironnet D, Sing CE, Diao Y. Concentration-Driven Self-Assembly of PS- b-PLA Bottlebrush Diblock Copolymers in Solution. ACS POLYMERS AU 2022; 2:232-244. [PMID: 35971423 PMCID: PMC9372993 DOI: 10.1021/acspolymersau.1c00057] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Bottlebrush polymers
are a class of semiflexible, hierarchical
macromolecules with unique potential for shape-, architecture-, and
composition-based structure–property design. It is now well-established
that in dilute to semidilute solution, bottlebrush homopolymers adopt
a wormlike conformation, which decreases in extension (persistence
length) as the concentration and molecular overlap increase. By comparison,
the solution phase self-assembly of bottlebrush diblock copolymers
(BBCP) in a good solvent remains poorly understood, despite critical
relevance for solution processing of ordered phases and photonic crystals.
In this work, we combine small-angle X-ray scattering, coarse-grained
simulation, and polymer synthesis to map the equilibrium phase behavior
and conformation of a set of large, nearly symmetric PS-b-PLA bottlebrush diblock copolymers in toluene. Three BBCP are synthesized,
with side chains of number-averaged molecular weights of 4500 (PS)
and 4200 g/mol (PLA) and total backbone degrees of polymerization
of 100, 255, and 400 repeat units. The grafting density is one side
chain per backbone repeat unit. With increasing concentration in solution,
all three polymers progress through a similar structural transition:
from dispersed, wormlike chains with concentration-dependent (decreasing)
extension, through the onset of disordered PS/PLA compositional fluctuations,
to the formation of a long-range ordered lamellar phase. With increasing
concentration in the microphase-separated regimes, the domain spacing
increases as individual chains partially re-extend due to block immiscibility.
Increases in the backbone degree of polymerization lead to changes
in the scattering profiles which are consistent with the increased
segregation strength. Coarse-grained simulations using an implicit
side-chain model are performed, and concentration-dependent self-assembly
behavior is qualitatively matched to experiments. Finally, using the
polymer with the largest backbone length, we demonstrate that lamellar
phases develop a well-defined photonic band gap in solution, which
can be tuned across the visible spectrum by varying polymer concentration.
Collapse
Affiliation(s)
- Bijal B. Patel
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Tianyuan Pan
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, 1304 W. Green Street, Urbana, Illinois 61801, United States
| | - Yilong Chang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W. Green St., MC 244, Urbana, Illinois 61801, United States
| | - Dylan J. Walsh
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Justin J. Kwok
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, 1304 W. Green Street, Urbana, Illinois 61801, United States
| | - Kyung Sun Park
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Kush Patel
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Damien Guironnet
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Charles E. Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Ying Diao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
26
|
Tarabukina EB, Tarasova EV, Filippov AP. Molecular Properties of Comb-Shaped Maleimide Copolymers in Dilute Solutions: Effect of Alkyl Side Chains. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22700134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Mesoscale Modeling of Agglomeration of Molecular Bottlebrushes: Focus on Conformations and Clustering Criteria. Polymers (Basel) 2022; 14:polym14122339. [PMID: 35745920 PMCID: PMC9227207 DOI: 10.3390/polym14122339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Using dissipative particle dynamics, we characterize dynamics of aggregation of molecular bottlebrushes in solvents of various qualities by tracking the number of clusters, the size of the largest cluster, and an average aggregation number. We focus on a low volume fraction of bottlebrushes in a range of solvents and probe three different cutoff criteria to identify bottlebrushes belonging to the same cluster. We demonstrate that the cutoff criteria which depend on both the coordination number and the length of the side chain allows one to correlate the agglomeration status with the structural characteristics of bottlebrushes in solvents of various qualities. We characterize conformational changes of the bottlebrush within the agglomerates with respect to those of an isolated bottlebrush in the same solvents. The characterization of bottlebrush conformations within the agglomerates is an important step in understanding the relationship between the bottlebrush architecture and material properties. An analysis of three distinct cutoff criteria to identify bottlebrushes belonging to the same cluster introduces a framework to identify both short-lived transient and long-lived agglomerates; the same approach could be further extended to characterize agglomerates of various macromolecules with complex architectures beyond the specific bottlebrush architecture considered herein.
Collapse
|
28
|
Kang JJ, Sachse C, Ko CH, Schroer MA, Vela SD, Molodenskiy D, Kohlbrecher J, Bushuev NV, Gumerov RA, Potemkin II, Jordan R, Papadakis CM. Rigid-to-Flexible Transition in a Molecular Brush in a Good Solvent at a Semidilute Concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5226-5236. [PMID: 35166545 DOI: 10.1021/acs.langmuir.1c02589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The structures of a molecular brush in a good solvent are investigated using synchrotron small-angle X-ray scattering in a wide range of concentrations. The brush under study, PiPOx239-g-PnPrOx14, features a relatively long poly(2-isopropenyl-2-oxazoline) (PiPOx) backbone and short poly(2-n-propyl-2-oxazoline) (PnPrOx) side chains. As a solvent, ethanol is used. By model fitting, the overall size and the persistence length as well as the interaction length and interaction strength are determined. At this, the interplay between form and structure factor is taken into account. The conformation of the molecular brush is traced upon increasing the solution concentration, and a rigid-to-flexible transition is found near the overlap concentration. Finally, the results of computer simulations of the molecular brush solutions confirm the experimental results.
Collapse
Affiliation(s)
- Jia-Jhen Kang
- Fachgebiet Physik weicher Materie, Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Clemens Sachse
- Professur für Makromolekulare Chemie, Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| | - Chia-Hsin Ko
- Fachgebiet Physik weicher Materie, Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Martin A Schroer
- European Molecular Biology Laboratory, Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg, Germany
| | - Stefano Da Vela
- European Molecular Biology Laboratory, Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg, Germany
| | - Dmitry Molodenskiy
- European Molecular Biology Laboratory, Hamburg Outstation, c/o Deutsches Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg, Germany
| | - Joachim Kohlbrecher
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, Forschungsstr. 111, 5232 Villigen PSI, Switzerland
| | - Nikita V Bushuev
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Rustam A Gumerov
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation
- National Research South Ural State University, Chelyabinsk 454080, Russian Federation
| | - Rainer Jordan
- Professur für Makromolekulare Chemie, Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| | - Christine M Papadakis
- Fachgebiet Physik weicher Materie, Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| |
Collapse
|
29
|
Ogbonna N, Dearman M, Cho CT, Bharti B, Peters AJ, Lawrence J. Topologically Precise and Discrete Bottlebrush Polymers: Synthesis, Characterization, and Structure-Property Relationships. JACS AU 2022; 2:898-905. [PMID: 35557765 PMCID: PMC9088296 DOI: 10.1021/jacsau.2c00010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 05/17/2023]
Abstract
As the complexity of polymer structure grows, so do the challenges for developing an accurate understanding of their structure-property relationships. Here, the synthesis of bottlebrush polymers with topologically precise and fully discrete structures is reported. A key feature of the strategy is the synthesis of discrete macromonomer libraries for their polymerization into topologically precise bottlebrushes that can be separated into discrete bottlebrushes (Đ = 1.0). As the system becomes more discrete, packing efficiency increases, distinct three-phase Langmuir-Blodgett isotherms are observed, and its glass transition temperature becomes responsive to side-chain sequence. Overall, this work presents a versatile strategy to access a range of precision bottlebrush polymers and unravels the impact of side-chain topology on their macroscopic properties. Precise control over side chains opens a pathway for tailoring polymer properties without changing their chemical makeup.
Collapse
Affiliation(s)
- Nduka
D. Ogbonna
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Michael Dearman
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Cheng-Ta Cho
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Bhuvnesh Bharti
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Andrew J. Peters
- Department
of Chemical Engineering, Louisiana Tech
University, Ruston, Louisiana 71272, United States
| | - Jimmy Lawrence
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
30
|
Liarou E, Houck HA, Du Prez FE. Reversible Transformations of Polymer Topologies through Visible Light and Darkness. J Am Chem Soc 2022; 144:6954-6963. [DOI: 10.1021/jacs.2c01622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Evelina Liarou
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent 9000, Belgium
| | - Hannes A. Houck
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent 9000, Belgium
| | - Filip E. Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent 9000, Belgium
| |
Collapse
|
31
|
Pan T, Dutta S, Sing CE. Interaction potential for coarse-grained models of bottlebrush polymers. J Chem Phys 2022; 156:014903. [PMID: 34998351 DOI: 10.1063/5.0076507] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bottlebrush polymers are a class of highly branched macromolecules that show promise for applications such as self-assembled photonic materials and tunable elastomers. However, computational studies of bottlebrush polymer solutions and melts remain challenging due to the high computational cost involved in explicitly accounting for the presence of side chains. Here, we consider a coarse-grained molecular model of bottlebrush polymers where the side chains are modeled implicitly, with the aim of expediting simulations by accessing longer length and time scales. The key ingredients of this model are the size of a coarse-grained segment and a suitably coarse-grained interaction potential between the non-bonded segments. Prior studies have not focused on developing explicit forms of such potentials, instead, relying on scaling arguments to model non-bonded interactions. Here, we show how to systematically calculate an interaction potential between the coarse-grained segments of bottlebrush from finer grained explicit side chain models using Monte Carlo and Brownian dynamics and then incorporate it into an implicit side chain model. We compare the predictions from our coarse-grained implicit side chain model with those obtained from models with explicit side chains in terms of the potential of mean force, the osmotic second virial coefficient, and the interpenetration function, highlighting the range of applicability and limitations of the coarse-grained representation. Although presented in the context of homopolymer bottlebrushes in athermal solvents, our proposed method can be extended to other solvent conditions as well as to different monomer chemistries. We expect that our implicit side chain model will prove useful for accelerating large-scale simulations of bottlebrush solutions and assembly.
Collapse
Affiliation(s)
- Tianyuan Pan
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green Street, Urbana, Illinois 61801, USA
| | - Sarit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA
| | - Charles E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA
| |
Collapse
|
32
|
Pan X, Ding M, Li L. Experimental Validation on Average Conformation of a Comblike Polystyrene Library in Dilute Solutions: Universal Scaling Laws and Abnormal SEC Elution Behavior. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xuejun Pan
- Food Science and Processing Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Mingming Ding
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Lianwei Li
- Food Science and Processing Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
33
|
Thermoresponsive Molecular Brushes with a Rigid-Chain Aromatic Polyester Backbone and Poly-2-alkyl-2-oxazoline Side Chains. Int J Mol Sci 2021; 22:ijms222212265. [PMID: 34830139 PMCID: PMC8622345 DOI: 10.3390/ijms222212265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
A new polycondensation aromatic rigid-chain polyester macroinitiator was synthesized and used to graft linear poly-2-ethyl-2-oxazoline as well as poly-2-isopropyl-2-oxazoline by cationic polymerization. The prepared copolymers and the macroinitiator were characterized by NMR, GPC, AFM, turbidimetry, static, and dynamic light scattering. The molar masses of the polyester main chain and the grafted copolymers with poly-2-ethyl-2-oxazoline and poly-2-isopropyl-2-oxazoline side chains were 26,500, 208,000, and 67,900, respectively. The molar masses of the side chains of poly-2-ethyl-2-oxazoline and poly-2-isopropyl-2-oxazoline and their grafting densities were 7400 and 3400 and 0.53 and 0.27, respectively. In chloroform, the copolymers conformation can be considered as a cylinder wormlike chain, the diameter of which depends on the side chain length. In water at low temperatures, the macromolecules of the poly-2-ethyl-2-oxazoline copolymer assume a wormlike conformation because their backbones are well shielded by side chains, whereas the copolymer with short side chains and low grafting density strongly aggregates, which was visualized by AFM. The phase separation temperatures of the copolymers were lower than those of linear analogs of the side chains and decreased with the concentration for both samples. The LCST were estimated to be around 45 °C for the poly-2-ethyl-2-oxazoline graft copolymer, and below 20 °C for the poly-2-isopropyl-2-oxazoline graft copolymer.
Collapse
|
34
|
Thoma JL, Duhamel J. Characterization of the Local Volume Probed by the Side-Chain Ends of Poly(oligo(ethylene glycol) 1-Pyrenemethyl ether methacrylate) Bottle Brushes in Solution Using Pyrene Excimer Fluorescence. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Janine L. Thoma
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Jean Duhamel
- Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
35
|
Pan X, Ishaq MW, Ali MW, Yang J, Li L, Chen Y. Unraveling the conformational properties of comb-like Poly(propargyl acrylate)-graft-poly(2-ethyl-2-oxazoline) chains in dilute solutions. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Noh J, Peterson GI, Choi T. Mechanochemical Reactivity of Bottlebrush and Dendronized Polymers: Solid vs. Solution States. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jinkyung Noh
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| | - Gregory I. Peterson
- Department of Chemistry Incheon National University 119 Academy-ro, Yeonsu-gu Incheon 22012 Republic of Korea
| | - Tae‐Lim Choi
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
37
|
Noh J, Peterson GI, Choi TL. Mechanochemical Reactivity of Bottlebrush and Dendronized Polymers: Solid vs. Solution States. Angew Chem Int Ed Engl 2021; 60:18651-18659. [PMID: 34101320 DOI: 10.1002/anie.202104447] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/22/2021] [Indexed: 12/23/2022]
Abstract
We explored the mechanochemical degradation of bottlebrush and dendronized polymers in solution (with ultrasonication, US) and solid states (with ball-mill grinding, BMG). Over 50 polymers were prepared with varying backbone length and arm architecture, composition, and size. With US, we found that bottlebrush and dendronized polymers exhibited consistent backbone scission behavior, which was related to their elongated conformations in solution. Considerably different behavior was observed with BMG, as arm architecture and composition had a significant impact on backbone scission rates. Arm scission was also observed for bottlebrush polymers in both solution and solid states, but only in the solid state for dendronized polymers. Motivated by these results, multi-mechanophore polymers with bottlebrush and dendronized polymer architectures were prepared and their reactivity was compared. Although dendronized polymers showed slower arm-scission, the selectivity for mechanophore activation was much higher. Overall, these results have important implications to the development of new mechanoresponsive materials.
Collapse
Affiliation(s)
- Jinkyung Noh
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gregory I Peterson
- Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
38
|
López-Barrón CR, Vargas-Lara F, Kang S. Single-Chain Conformation of Poly(α-olefins) in Dilute Solutions at the Crossover between Linear and Bottlebrush Architectures. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Shuhui Kang
- ExxonMobil Chemical Company, Baytown, Texas 77520, United States
| |
Collapse
|
39
|
Bang KT, Kim H, Kang SY, Bhaumik A, Ahn S, Yun N, Choi TL. Constructing a Library of Doubly Grafted Polymers by a One-Shot Cu-Catalyzed Multicomponent Grafting Strategy. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ki-Taek Bang
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 151-747, Republic of Korea
| | - Hyunseok Kim
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 151-747, Republic of Korea
| | - Sung-Yun Kang
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 151-747, Republic of Korea
| | - Atanu Bhaumik
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 151-747, Republic of Korea
| | - Sojeong Ahn
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 151-747, Republic of Korea
| | - Namkyu Yun
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 151-747, Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 151-747, Republic of Korea
| |
Collapse
|
40
|
Peterson GI, Noh J, Ha MY, Yang S, Lee WB, Choi TL. Influence of Grafting Density on Ultrasound-Induced Backbone and Arm Scission of Graft Copolymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Gregory I. Peterson
- Department of Chemistry, Incheon National University, 119 Academy-ro,
Yeonsu-gu, Incheon 22012, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinkyung Noh
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Young Ha
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sanghee Yang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
41
|
Pan T, Patel BB, Walsh DJ, Dutta S, Guironnet D, Diao Y, Sing CE. Implicit Side-Chain Model and Experimental Characterization of Bottlebrush Block Copolymer Solution Assembly. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tianyuan Pan
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Bijal B. Patel
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Dylan J. Walsh
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Sarit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Damien Guironnet
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ying Diao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Charles E. Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
42
|
Zhang W, Vargas-Lara F, Orski SV, Beers KL, Douglas JF. Modeling short-chain branched polyethylenes in dilute solution under variable solvent quality conditions: Basic configurational properties. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
43
|
Sivokhin AР, Orekhov DV, Kazantsev OA, Gubanova OV, Kamorin DM, Zarubina IS, Bolshakova EA, Zaitsev SD. Amphiphilic thermoresponsive copolymer bottlebrushes: synthesis, characterization, and study of their self-assembly into flower-like micelles. Polym J 2021. [DOI: 10.1038/s41428-020-00456-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Boyle BM, Collins JL, Mensch TE, Ryan MD, Newell BS, Miyake GM. Impact of Backbone Composition on Homopolymer Dynamics and Brush Block Copolymer Self-Assembly. Polym Chem 2020; 11:7147-7158. [PMID: 33456502 PMCID: PMC7805478 DOI: 10.1039/d0py01007c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four series of brush block copolymers (BBCP), with near identical side chain compositions but varying backbone structures, were synthesized to investigate the effect of backbone structure on the process of thermal BBCP self-assembly to photonic crystals (PCs). Each of the self-assembled PC films were examined by reflection measurements, small angle X-ray scattering measurements, and scanning electron microscopy to compare the resulting properties of the polymeric photonic crystal and the nanostructured morphology impacted by the backbone structure. It was found that the composition of the brush backbone within a BBCP has a dramatic effect on the ability of the BBCP to self-assemble into ordered nanostructures and on the local ordering of the nanostructure morphology accessed with higher molecular weight (MW) BBCPs (> 1,500 kg/mol). BBCPs with a norbornene imide-based backbone were able to thermally self-assemble to longer wavelength reflecting PCs and had higher fidelity ordering of lamellar nanostructures with higher MW polymers. By analyzing the melt rheological responses of the backbone compositions, both as linear polymers and homobrush polymers, it was concluded that the inherent fragility of the backbone promotes enhanced local ordering in the lamellar nanostructure morphology as well as access to larger domain sizes.
Collapse
Affiliation(s)
- Bret M. Boyle
- Department of Chemistry, Colorado State University, Fort Collins, Colorado
| | - Joseph L. Collins
- Department of Chemistry, Colorado State University, Fort Collins, Colorado
| | - Tara E. Mensch
- Department of Chemistry, Colorado State University, Fort Collins, Colorado
| | - Matthew D. Ryan
- Department of Chemistry, Colorado State University, Fort Collins, Colorado
| | - Brian S. Newell
- Department of Chemistry, Colorado State University, Fort Collins, Colorado
| | - Garret M. Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
45
|
Bichler KJ, Jakobi B, Sakai VG, Klapproth A, Mole RA, Schneider GJ. Short-Time Dynamics of PDMS- g-PDMS Bottlebrush Polymer Melts Investigated by Quasi-Elastic Neutron Scattering. Macromolecules 2020; 53:9553-9562. [PMID: 33191954 PMCID: PMC7659037 DOI: 10.1021/acs.macromol.0c01846] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/28/2020] [Indexed: 12/04/2022]
Abstract
We have studied the short-time dynamical behavior of polydimethylsiloxane (PDMS) bottlebrush polymers, PDMS-g-PDMS. The samples have similar backbone lengths but different side-chain lengths, resulting in a shape transition. Quasi-elastic neutron scattering was used to observe the dynamical changes inherent to these structural changes. The combination of data from three spectrometers enabled to follow the dynamics over broad frequency and temperature ranges, which included segmental relaxations and more localized motions. The latter, identified as the methyl group rotation, is described by a threefold jump model and shows higher activation energies compared to linear PDMS. The segmental relaxation times, τs, decrease with increasing molecular weight of the side chains but increase with momentum transfer, Q, following a power law, which suggests a non-Gaussian behavior for bottlebrush polymers.
Collapse
Affiliation(s)
- Karin J. Bichler
- Department
of Physics &Astronomy, Louisiana State
University, Baton
Rouge 70803, Louisiana, United States
| | - Bruno Jakobi
- Department
of Chemistry, Louisiana State University, Baton Rouge 70803, Louisiana, United States
| | - Victoria García Sakai
- ISIS
Facility, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0QX, U.K.
| | - Alice Klapproth
- Australian
Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights 2234, New South Wales, Australia
| | - Richard A. Mole
- Australian
Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights 2234, New South Wales, Australia
| | - Gerald J. Schneider
- Department
of Physics &Astronomy, Louisiana State
University, Baton
Rouge 70803, Louisiana, United States
- Department
of Chemistry, Louisiana State University, Baton Rouge 70803, Louisiana, United States
| |
Collapse
|
46
|
Tarabukina E, Fatullaev E, Krasova A, Kurlykin M, Tenkovtsev A, Sheiko SS, Filippov A. Synthesis, Structure, Hydrodynamics and Thermoresponsiveness of Graft Copolymer with Aromatic Polyester Backbone at Poly(2-isopropyl-2-oxazoline) Side Chains. Polymers (Basel) 2020; 12:polym12112643. [PMID: 33182803 PMCID: PMC7698206 DOI: 10.3390/polym12112643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 02/06/2023] Open
Abstract
New thermoresponsive graft copolymers with an aromatic polyester backbone and poly(2-isopropyl-2-oxazoline) (PiPrOx) side chains are synthesized and characterized by NMR and GPC. The grafting density of side chains is 0.49. The molar masses of the graft-copolymer, its backbone, side chains, and the modeling poly-2-isopropyl-2-oxaziline are 74,000, 19,000, 4300, and 16,600 g·mol−1, respectively. Their conformational properties in nitropropane as well as thermoresponsiveness in aqueous solutions are studied and compared with that of free side chains, i.e., linear PiPrOx with a hydrophobic terminal group. In nitropropane, the graft-copolymer adopts conformation of a 13-arm star with a core of a collapsed main chain and a PiPrOx corona. Similarly, a linear PiPrOx chain protects its bulky terminal group by wrapping around it in a selective solvent. In aqueous solutions at low temperatures, graft copolymers form aggregates due to interaction of hydrophobic backbones, which contrasts to molecular solutions of the model linear PiPrOx. The lower critical solution temperature (LCST) for the graft copolymer is around 20 °C. The phase separation temperatures of the copolymer solution were lower than that of the linear chain counterpart, decreasing with concentration for both polymers.
Collapse
Affiliation(s)
- Elena Tarabukina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 Saint-Petersburg, Russia; (A.K.); (M.K.); (A.T.); (S.S.S.); (A.F.)
- Correspondence:
| | - Emil Fatullaev
- School of Photonics, St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 199004 Saint-Petersburg, Russia;
| | - Anna Krasova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 Saint-Petersburg, Russia; (A.K.); (M.K.); (A.T.); (S.S.S.); (A.F.)
| | - Mikhail Kurlykin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 Saint-Petersburg, Russia; (A.K.); (M.K.); (A.T.); (S.S.S.); (A.F.)
| | - Andrey Tenkovtsev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 Saint-Petersburg, Russia; (A.K.); (M.K.); (A.T.); (S.S.S.); (A.F.)
| | - Sergei S. Sheiko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 Saint-Petersburg, Russia; (A.K.); (M.K.); (A.T.); (S.S.S.); (A.F.)
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Alexander Filippov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 Saint-Petersburg, Russia; (A.K.); (M.K.); (A.T.); (S.S.S.); (A.F.)
| |
Collapse
|
47
|
Xiao L, Li J, Peng G, Huang G. The effect of grafting density and side chain length on the conformation of PEG grafted bottlebrush polymers. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
Affiliation(s)
- Sarit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Charles E. Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
49
|
Wade MA, Walsh D, Lee JCW, Kelley E, Weigandt K, Guironnet D, Rogers SA. Color, structure, and rheology of a diblock bottlebrush copolymer solution. SOFT MATTER 2020; 16:4919-4931. [PMID: 32393953 PMCID: PMC11253116 DOI: 10.1039/d0sm00397b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A structure-property-process relation is established for a diblock bottlebrush copolymer solution, through a combination of rheo-neutron scattering, imaging, and rheological measurements. Polylactic acid-b-polystyrene diblock bottlebrush copolymers were dispersed in toluene with a concentration of 175 mg ml-1, where they self-assembled into a lamellar phase. All measurements were carried out at 5 °C. The solution color, as observed in reflection, is shown to be a function of the shear rate. Under equilibrium and near-equilibrium conditions, the solution has a green color. At low shear rates the solution remains green, while at intermediate rates the solution is cyan. At the highest rates applied the solution is indigo. The lamellar spacing is shown to be a decreasing function of shear rate, partially accounting for the color change. The lamellae are oriented 'face-on' with the wall under quiescence and low shear rates, while a switch to 'edge-on' is observed at the highest shear rates, where the reflected color disappears. The intramolecular distance between bottlebrush polymers does not change with shear rate, although at high shear rates, the bottlebrush polymers are preferentially aligned in the vorticity direction within the lamellae. We therefore form a consistent relation between structure and function, spanning a wide range of length scales and shear rates.
Collapse
Affiliation(s)
- Matthew A Wade
- Chemical and Biomolecular Engineering Department, University of Illinois at Urbana-Champaign, 607 S Mathews Ave, Urbana, Illinois, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Patel BB, Walsh DJ, Kim DH, Kwok J, Lee B, Guironnet D, Diao Y. Tunable structural color of bottlebrush block copolymers through direct-write 3D printing from solution. SCIENCE ADVANCES 2020; 6:eaaz7202. [PMID: 32577511 PMCID: PMC7286684 DOI: 10.1126/sciadv.aaz7202] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/23/2020] [Indexed: 05/18/2023]
Abstract
Additive manufacturing of functional materials is limited by control of microstructure and assembly at the nanoscale. In this work, we integrate nonequilibrium self-assembly with direct-write three-dimensional (3D) printing to prepare bottlebrush block copolymer (BBCP) photonic crystals (PCs) with tunable structure color. After varying deposition conditions during printing of a single ink solution, peak reflected wavelength for BBCP PCs span a range of 403 to 626 nm (blue to red), corresponding to an estimated change in d-spacing of >70 nm (Bragg- Snell equation). Physical characterization confirms that these vivid optical effects are underpinned by tuning of lamellar domain spacing, which we attribute to modulation of polymer conformation. Using in situ optical microscopy and solvent-vapor annealing, we identify kinetic trapping of metastable microstructures during printing as the mechanism for domain size control. More generally, we present a robust processing scheme with potential for on-the-fly property tuning of a variety of functional materials.
Collapse
Affiliation(s)
- Bijal B. Patel
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Dylan J. Walsh
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Do Hoon Kim
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Justin Kwok
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, IL 61801, USA
| | - Byeongdu Lee
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Damien Guironnet
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Ying Diao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
- Corresponding author.
| |
Collapse
|