1
|
Molecular Dynamics Investigation of Hyaluronan in Biolubrication. Polymers (Basel) 2022; 14:polym14194031. [PMID: 36235979 PMCID: PMC9571324 DOI: 10.3390/polym14194031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Aqueous solution of strongly hydrophilic biopolymers is known to exhibit excellent lubrication properties in biological systems, such as the synovial fluid in human joints. Several mechanisms have been proposed on the biolubrication of joints, such as the boundary lubrication and the fluid exudation lubrication. In these models, mechanical properties of synovial fluid containing biopolymers are essential. To examine the role of such biopolymers in lubrication, a series of molecular dynamics simulations with an all-atom classical force field model were conducted for aqueous solutions of hyaluronan (hyaluronic acid, HA) under constant shear. After equilibrating the system, the Lees-Edwards boundary condition was imposed, with which a steady state of uniform shear flow was realized. Comparison of HA systems with hydrocarbon (pentadecane, PD) solutions of similar mass concentration indicates that the viscosity of HA solutions is slightly larger in general than that of PDs, due to the strong hydration of HA molecules. Effects of added electrolyte (NaCl) were also discussed in terms of hydration. These findings suggest the role of HA in biolubirication as a load-supporting component, with its flexible character and strong hydration structure.
Collapse
|
2
|
Zander T, Garamus VM, Dédinaité A, Claesson PM, Bełdowski P, Górny K, Dendzik Z, Wieland DCF, Willumeit-Römer R. Influence of the Molecular Weight and the Presence of Calcium Ions on the Molecular Interaction of Hyaluronan and DPPC. Molecules 2020; 25:E3907. [PMID: 32867196 PMCID: PMC7504306 DOI: 10.3390/molecules25173907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 12/03/2022] Open
Abstract
Hyaluronan is an essential physiological bio macromolecule with different functions. One prominent area is the synovial fluid which exhibits remarkable lubrication properties. However, the synovial fluid is a multi-component system where different macromolecules interact in a synergetic fashion. Within this study we focus on the interaction of hyaluronan and phospholipids, which are thought to play a key role for lubrication. We investigate how the interactions and the association structures formed by hyaluronan (HA) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) are influenced by the molecular weight of the bio polymer and the ionic composition of the solution. We combine techniques allowing us to investigate the phase behavior of lipids (differential scanning calorimetry, zeta potential and electrophoretic mobility) with structural investigation (dynamic light scattering, small angle scattering) and theoretical simulations (molecular dynamics). The interaction of hyaluronan and phospholipids depends on the molecular weight, where hyaluronan with lower molecular weight has the strongest interaction. Furthermore, the interaction is increased by the presence of calcium ions. Our simulations show that calcium ions are located close to the carboxylate groups of HA and, by this, reduce the number of formed hydrogen bonds between HA and DPPC. The observed change in the DPPC phase behavior can be attributed to a local charge inversion by calcium ions binding to the carboxylate groups as the binding distribution of hyaluronan and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine is not changed.
Collapse
Affiliation(s)
- Thomas Zander
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht: Centre for Materials and Costal Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany; (T.Z.); (V.M.G.); (R.W.-R.)
| | - Vasil M. Garamus
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht: Centre for Materials and Costal Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany; (T.Z.); (V.M.G.); (R.W.-R.)
| | - Andra Dédinaité
- Department of Chemistry, Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-10044 Stockholm, Sweden; (A.D.); (P.M.C.)
- Division of Bioscience and Materials, RISE Research Institutes of Sweden, SE-114 86 Stockholm, Sweden
| | - Per M. Claesson
- Department of Chemistry, Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-10044 Stockholm, Sweden; (A.D.); (P.M.C.)
- Division of Bioscience and Materials, RISE Research Institutes of Sweden, SE-114 86 Stockholm, Sweden
| | - Piotr Bełdowski
- Institue of Mathematics and Physics, UTP University of Science and Technology, al. Kaliskiego 7, 85-796 Bydgoszcz, Poland;
| | - Krzysztof Górny
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (K.G.); (Z.D.)
| | - Zbigniew Dendzik
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (K.G.); (Z.D.)
| | - D. C. Florian Wieland
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht: Centre for Materials and Costal Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany; (T.Z.); (V.M.G.); (R.W.-R.)
| | - Regine Willumeit-Römer
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht: Centre for Materials and Costal Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany; (T.Z.); (V.M.G.); (R.W.-R.)
| |
Collapse
|