1
|
Zarubin M, Andreev E, Kravchenko E, Pinaeva U, Nechaev A, Apel P. Developing tardigrade-inspired material: Track membranes functionalized with Dsup protein for cell-free DNA isolation. Biotechnol Prog 2024; 40:e3478. [PMID: 38699905 DOI: 10.1002/btpr.3478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
When developing functionalized biomaterials, the proteins from extremophilic organisms, in particular unique tardigrade disordered proteins, are of great value. The damage suppressor protein (Dsup), initially discovered in the tardigrade Ramazzottius varieornatus and found to be an efficient DNA protector under oxidative and irradiation stress, has been hypothesized to possess a good potential for the development of the material, which can isolate cell-free DNA. With this in mind, DNA-nonadsorbing polyethylene terephthalate track membranes have been functionalized using the Dsup protein via covalent bonding with glutaraldehyde. The filtration experiments have verified the ability of track membranes with the immobilized Dsup protein to adsorb cell-free DNA, with an accumulation capacity of 70 ± 19 mg m-2. The resulting track membrane-based biomaterial might be used in various devices for filtration and separation of cell-free DNA molecules from biological solutions and environmental samples, and also for their accumulation, storage, and further manipulation.
Collapse
Affiliation(s)
- Mikhail Zarubin
- Dzhelepov Laboratory of Nuclear Problems, International Intergovernmental Organization Joint Institute for Nuclear Research (DLNP JINR), Dubna, Russia
| | - Evgeny Andreev
- Flerov Laboratory of Nuclear Reactions, International Intergovernmental Organization Joint Institute for Nuclear Research (FLNR JINR), Dubna, Russia
| | - Elena Kravchenko
- Dzhelepov Laboratory of Nuclear Problems, International Intergovernmental Organization Joint Institute for Nuclear Research (DLNP JINR), Dubna, Russia
| | - Uliana Pinaeva
- Flerov Laboratory of Nuclear Reactions, International Intergovernmental Organization Joint Institute for Nuclear Research (FLNR JINR), Dubna, Russia
| | - Alexander Nechaev
- Flerov Laboratory of Nuclear Reactions, International Intergovernmental Organization Joint Institute for Nuclear Research (FLNR JINR), Dubna, Russia
| | - Pavel Apel
- Flerov Laboratory of Nuclear Reactions, International Intergovernmental Organization Joint Institute for Nuclear Research (FLNR JINR), Dubna, Russia
| |
Collapse
|
2
|
Kumawat RL, Jena MK, Mittal S, Pathak B. Advancement of Next-Generation DNA Sequencing through Ionic Blockade and Transverse Tunneling Current Methods. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401112. [PMID: 38716623 DOI: 10.1002/smll.202401112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/05/2024] [Indexed: 10/04/2024]
Abstract
DNA sequencing is transforming the field of medical diagnostics and personalized medicine development by providing a pool of genetic information. Recent advancements have propelled solid-state material-based sequencing into the forefront as a promising next-generation sequencing (NGS) technology, offering amplification-free, cost-effective, and high-throughput DNA analysis. Consequently, a comprehensive framework for diverse sequencing methodologies and a cross-sectional understanding with meticulous documentation of the latest advancements is of timely need. This review explores a broad spectrum of progress and accomplishments in the field of DNA sequencing, focusing mainly on electrical detection methods. The review delves deep into both the theoretical and experimental demonstrations of the ionic blockade and transverse tunneling current methods across a broad range of device architectures, nanopore, nanogap, nanochannel, and hybrid/heterostructures. Additionally, various aspects of each architecture are explored along with their strengths and weaknesses, scrutinizing their potential applications for ultrafast DNA sequencing. Finally, an overview of existing challenges and future directions is provided to expedite the emergence of high-precision and ultrafast DNA sequencing with ionic and transverse current approaches.
Collapse
Affiliation(s)
- Rameshwar L Kumawat
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| | - Milan Kumar Jena
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| | - Sneha Mittal
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| |
Collapse
|
3
|
Mejri A, Arroyo N, Herlem G, Palmeri J, Manghi M, Henn F, Picaud F. Impact of Single-Walled Carbon Nanotube Functionalization on Ion and Water Molecule Transport at the Nanoscale. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:117. [PMID: 38202572 PMCID: PMC10780950 DOI: 10.3390/nano14010117] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Nanofluidics has a very promising future owing to its numerous applications in many domains. It remains, however, very difficult to understand the basic physico-chemical principles that control the behavior of solvents confined in nanometric channels. Here, water and ion transport in carbon nanotubes is investigated using classical force field molecular dynamics simulations. By combining one single walled carbon nanotube (uniformly charged or not) with two perforated graphene sheets, we mimic single nanopore devices similar to experimental ones. The graphitic edges delimit two reservoirs of water and ions in the simulation cell from which a voltage is imposed through the application of an external electric field. By analyzing the evolution of the electrolyte conductivity, the role of the carbon nanotube geometric parameters (radius and chirality) and of the functionalization of the carbon nanotube entrances with OH or COO- groups is investigated for different concentrations of group functions.
Collapse
Affiliation(s)
- Alia Mejri
- Unité de Recherche SINERGIES, UFR Sciences et Techniques, Centre Hospitalier, 16 Route de Gray, 25030 Besançon, France (N.A.); (G.H.)
| | - Nicolas Arroyo
- Unité de Recherche SINERGIES, UFR Sciences et Techniques, Centre Hospitalier, 16 Route de Gray, 25030 Besançon, France (N.A.); (G.H.)
| | - Guillaume Herlem
- Unité de Recherche SINERGIES, UFR Sciences et Techniques, Centre Hospitalier, 16 Route de Gray, 25030 Besançon, France (N.A.); (G.H.)
| | - John Palmeri
- Laboratoire Charles Coulomb (L2C, UMR CNRS 5221), Université Montpellier, Place Eugène Bataillon, 34090 Montpellier, France; (J.P.); (F.H.)
| | - Manoel Manghi
- Laboratoire de Physique Théorique (LPT, UMR CNRS 5152), Université Toulouse III—Paul Sabatier, 31062 Toulouse, France;
| | - François Henn
- Laboratoire Charles Coulomb (L2C, UMR CNRS 5221), Université Montpellier, Place Eugène Bataillon, 34090 Montpellier, France; (J.P.); (F.H.)
| | - Fabien Picaud
- Unité de Recherche SINERGIES, UFR Sciences et Techniques, Centre Hospitalier, 16 Route de Gray, 25030 Besançon, France (N.A.); (G.H.)
| |
Collapse
|
4
|
Liang L, Qin F, Wang S, Wu J, Li R, Wang Z, Ren M, Liu D, Wang D, Astruc D. Overview of the materials design and sensing strategies of nanopore devices. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Stierlen A, Greive SJ, Bacri L, Manivet P, Cressiot B, Pelta J. Nanopore Discrimination of Coagulation Biomarker Derivatives and Characterization of a Post-Translational Modification. ACS CENTRAL SCIENCE 2023; 9:228-238. [PMID: 36844502 PMCID: PMC9951287 DOI: 10.1021/acscentsci.2c01256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Indexed: 06/18/2023]
Abstract
One of the most important health challenges is the early and ongoing detection of disease for prevention, as well as personalized treatment management. Development of new sensitive analytical point-of-care tests are, therefore, necessary for direct biomarker detection from biofluids as critical tools to address the healthcare needs of an aging global population. Coagulation disorders associated with stroke, heart attack, or cancer are defined by an increased level of the fibrinopeptide A (FPA) biomarker, among others. This biomarker exists in more than one form: it can be post-translationally modified with a phosphate and also cleaved to form shorter peptides. Current assays are long and have difficulties in discriminating between these derivatives; hence, this is an underutilized biomarker for routine clinical practice. We use nanopore sensing to identify FPA, the phosphorylated FPA, and two derivatives. Each of these peptides is characterized by unique electrical signals for both dwell time and blockade level. We also show that the phosphorylated form of FPA can adopt two different conformations, each of which have different values for each electrical parameter. We were able to use these parameters to discriminate these peptides from a mix, thereby opening the way for the potential development of new point-of-care tests.
Collapse
Affiliation(s)
- Aïcha Stierlen
- LAMBE,
CNRS, CY Cergy Paris Université, 95033 Cergy, France
| | | | - Laurent Bacri
- LAMBE,
CNRS, Univ Evry, Université Paris-Saclay, 91025 Evry-Courcouronnes, France
| | - Philippe Manivet
- Centre
de Ressources Biologiques Biobank Lariboisière (BB-0033-00064), DMU BioGem, AP-HP, 75475 Paris, France
- Université
Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | | | - Juan Pelta
- LAMBE,
CNRS, CY Cergy Paris Université, 95033 Cergy, France
- LAMBE,
CNRS, Univ Evry, Université Paris-Saclay, 91025 Evry-Courcouronnes, France
| |
Collapse
|
6
|
Zhang L, Burns N, Jordan M, Jayasinghe L, Guo P. Macromolecule sensing and tumor biomarker detection by harnessing terminal size and hydrophobicity of viral DNA packaging motor channels into membranes and flow cells. Biomater Sci 2021; 10:167-177. [PMID: 34812812 DOI: 10.1039/d1bm01264a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biological nanopores for single-pore sensing have the advantage of size homogeneity, structural reproducibility, and channel amenability. In order to translate this to clinical applications, the functional biological nanopore must be inserted into a stable system for high-throughput analysis. Here we report factors that control the rate of pore insertion into polymer membrane and analyte translocation through the channel of viral DNA packaging motors of Phi29, T3 and T7. The hydrophobicity of aminol or carboxyl terminals and their relation to the analyte translocation were investigated. It was found that both the size and the hydrophobicity of the pore terminus are critical factors for direct membrane insertion. An N-terminus or C-terminus hydrophobic mutation is crucial for governing insertion orientation and subsequent macromolecule translocation due to the one-way traffic property. The N- or C-modification led to two different modes of application. The C-terminal insertion permits translocation of analytes such as peptides to enter the channel through the N terminus, while N-terminus insertion prevents translocation but offers the measurement of gating as a sensing parameter, thus generating a tool for detection of markers. A urokinase-type Plasminogen Activator Receptor (uPAR) binding peptide was fused into the C-terminal of Phi29 nanopore to serve as a probe for uPAR protein detection. The uPAR has proven to be a predictive biomarker in several types of cancer, including breast cancer. With an N-terminal insertion, the binding of the uPAR antigen to individual peptide probe induced discretive steps of current reduction due to the induction of channel gating. The distinctive current signatures enabled us to distinguish uPAR positive and negative tumor cell lines. This finding provides a theoretical basis for a robust biological nanopore sensing system for high-throughput macromolecular sensing and tumor biomarker detection.
Collapse
Affiliation(s)
- Long Zhang
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; Dorothy M. Davis Heart and Lung Research Institute; James Comprehensive Cancer Center; College of Medicine; The Ohio State University, Columbus, OH 43210, USA.
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; Dorothy M. Davis Heart and Lung Research Institute; James Comprehensive Cancer Center; College of Medicine; The Ohio State University, Columbus, OH 43210, USA.
| | - Michael Jordan
- Oxford Nanopore Technologies Ltd, Gosling Building, Edmund Halley Road, Oxford Science Park, Oxford, OX4 4DQ, UK
| | - Lakmal Jayasinghe
- Oxford Nanopore Technologies Ltd, Gosling Building, Edmund Halley Road, Oxford Science Park, Oxford, OX4 4DQ, UK
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; Dorothy M. Davis Heart and Lung Research Institute; James Comprehensive Cancer Center; College of Medicine; The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
7
|
Rattu P, Glencross F, Mader SL, Skylaris CK, Matthews SJ, Rouse SL, Khalid S. Atomistic level characterisation of ssDNA translocation through the E. coli proteins CsgG and CsgF for nanopore sequencing. Comput Struct Biotechnol J 2021; 19:6417-6430. [PMID: 34938416 PMCID: PMC8649110 DOI: 10.1016/j.csbj.2021.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/01/2022] Open
Abstract
Two proteins of the Escherichia coli membrane protein complex, CsgG and CsgF, are studied as proteinaceous nanopores for DNA sequencing. It is highly desirable to control the DNA as it moves through the pores, this requires characterisation of DNA translocation and subsequent optimization of the pores. In order to inform protein engineering to improve the pores, we have conducted a series of molecular dynamics simulations to characterise the mechanical strength and conformational dynamics of CsgG and the CsgG-CsgF complex and how these impact ssDNA, water and ion movement. We find that the barrel of CsgG is more susceptible to damage from external electric fields compared to the protein vestibule. Furthermore, the presence of CsgF within the CsgG-CsgF complex enables the complex to withstand higher electric fields. We find that the eyelet loops of CsgG play a key role in both slowing the translocation rate of DNA and modulating the conductance of the pore. CsgF also impacts the DNA translocation rate, but to a lesser degree than CsgG.
Collapse
Affiliation(s)
- Punam Rattu
- School of Chemistry, University of Southampton, SO17 1BJ, United Kingdom
| | - Flo Glencross
- Department of Life Sciences, Imperial College London, SW7 2AZ, United Kingdom
| | - Sophie L Mader
- Department of Biochemistry, University of Oxford, OX1 3QU, United Kingdom
| | | | - Stephen J Matthews
- Department of Life Sciences, Imperial College London, SW7 2AZ, United Kingdom
| | - Sarah L Rouse
- Department of Life Sciences, Imperial College London, SW7 2AZ, United Kingdom
| | - Syma Khalid
- School of Chemistry, University of Southampton, SO17 1BJ, United Kingdom
- Department of Biochemistry, University of Oxford, OX1 3QU, United Kingdom
| |
Collapse
|
8
|
Fujinami Tanimoto IM, Cressiot B, Jarroux N, Roman J, Patriarche G, Le Pioufle B, Pelta J, Bacri L. Selective target protein detection using a decorated nanopore into a microfluidic device. Biosens Bioelectron 2021; 183:113195. [PMID: 33857755 DOI: 10.1016/j.bios.2021.113195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
Solid-state nanopores provide a powerful tool to electrically analyze nanoparticles and biomolecules at single-molecule resolution. These biosensors need to have a controlled surface to provide information about the analyte. Specific detection remains limited due to nonspecific interactions between the molecules and the nanopore. Here, a polymer surface modification to passivate the membrane is performed. This functionalization improves nanopore stability and ionic conduction. Moreover, one can control the nanopore diameter and the specific interactions between protein and pore surface. The effect of ionic strength and pH are probed. Which enables control of the electroosmotic driving force and dynamics. Furthermore, a study of polymer chain structure and permeability in the pore are carried out. The nanopore chip is integrated into a microfluidic device to ease its handling. Finally, a discussion of an ionic conductance model through a permeable crown along the nanopore surface is elucidated. The proof of concept is demonstrated by the capture of free streptavidin by the biotins grafted into the nanopore. In the future, this approach could be used for virus diagnostic, nanoparticle or biomarker sensing.
Collapse
Affiliation(s)
- Izadora Mayumi Fujinami Tanimoto
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, 91025, Evry-Courcouronnes, France; Université Paris-Saclay, ENS Paris-Saclay, CNRS, LuMIn, Institut d'Alembert, 91190, Gif-sur-Yvette, France
| | | | - Nathalie Jarroux
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, 91025, Evry-Courcouronnes, France
| | - Jean Roman
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, LuMIn, Institut d'Alembert, 91190, Gif-sur-Yvette, France
| | - Gilles Patriarche
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120, Palaiseau, France
| | - Bruno Le Pioufle
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, LuMIn, Institut d'Alembert, 91190, Gif-sur-Yvette, France.
| | - Juan Pelta
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, 91025, Evry-Courcouronnes, France.
| | - Laurent Bacri
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, 91025, Evry-Courcouronnes, France.
| |
Collapse
|
9
|
Reynaud L, Bouchet-Spinelli A, Raillon C, Buhot A. Sensing with Nanopores and Aptamers: A Way Forward. SENSORS 2020; 20:s20164495. [PMID: 32796729 PMCID: PMC7472324 DOI: 10.3390/s20164495] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
In the 90s, the development of a novel single molecule technique based on nanopore sensing emerged. Preliminary improvements were based on the molecular or biological engineering of protein nanopores along with the use of nanotechnologies developed in the context of microelectronics. Since the last decade, the convergence between those two worlds has allowed for biomimetic approaches. In this respect, the combination of nanopores with aptamers, single-stranded oligonucleotides specifically selected towards molecular or cellular targets from an in vitro method, gained a lot of interest with potential applications for the single molecule detection and recognition in various domains like health, environment or security. The recent developments performed by combining nanopores and aptamers are highlighted in this review and some perspectives are drawn.
Collapse
|