1
|
Baindara P, Roy D, Mandal SM. CycP: A Novel Self-Assembled Vesicle-Forming Cyclic Antimicrobial Peptide to Control Drug-Resistant S. aureus. Bioengineering (Basel) 2024; 11:855. [PMID: 39199812 PMCID: PMC11351190 DOI: 10.3390/bioengineering11080855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Antimicrobial peptides (AMPs) are considered a promising alternative to conventional antibiotics to fight against the rapid evolution of antibiotic resistance. Other than their potent antimicrobial properties, AMP-based vesicles can be used as efficient drug-delivery vehicles. In the present study, we synthesized and characterized a new cyclic AMP, consisting of all-hydrophobic cores with antimicrobial activity against S. aureus. Interestingly, CycP undergoes supramolecular self-assembly, and self-assembled CycP (sCycP) vesicles are characterized under an electron microscope; however, these vesicles do not display antimicrobial activity. Next, sCycP vesicles are used in combination with SXT (sulfamethoxazole-trimethoprim) vesicles to check the drug loading and delivery capacity of sCycP vesicles to bacterial cell membranes. Interestingly, sCycP vesicles showed synergistic action with SXT vesicles and resulted in a significant reduction in MIC against S. aureus. Further, electron microscopy confirmed the membrane-specific killing mechanism of SXT-loaded sCycP vesicles. Additionally, CycP showed high binding affinities with the β-lactamase of S. aureus, which was one of its possible antimicrobial mechanisms of action. Overall, the results suggested that CycP is a novel self-assembled dual-action cyclic AMP with non-cytotoxic properties that can be used alone as an AMP or a self-assembled drug delivery vehicle for antibiotics to combat S. aureus infections.
Collapse
Affiliation(s)
- Piyush Baindara
- Animal Sciences Research Center, Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA;
| | - Dinata Roy
- Department of Zoology, Mizoram University, Aizawl 796004, India;
| | - Santi M. Mandal
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Skowicki M, Tarvirdipour S, Kraus M, Schoenenberger CA, Palivan CG. Nanoassemblies designed for efficient nuclear targeting. Adv Drug Deliv Rev 2024; 211:115354. [PMID: 38857762 DOI: 10.1016/j.addr.2024.115354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
One of the key aspects of coping efficiently with complex pathological conditions is delivering the desired therapeutic compounds with precision in both space and time. Therefore, the focus on nuclear-targeted delivery systems has emerged as a promising strategy with high potential, particularly in gene therapy and cancer treatment. Here, we explore the design of supramolecular nanoassemblies as vehicles to deliver specific compounds to the nucleus, with the special focus on polymer and peptide-based carriers that expose nuclear localization signals. Such nanoassemblies aim at maximizing the concentration of genetic and therapeutic agents within the nucleus, thereby optimizing treatment outcomes while minimizing off-target effects. A complex scenario of conditions, including cellular uptake, endosomal escape, and nuclear translocation, requires fine tuning of the nanocarriers' properties. First, we introduce the principles of nuclear import and the role of nuclear pore complexes that reveal strategies for targeting nanosystems to the nucleus. Then, we provide an overview of cargoes that rely on nuclear localization for optimal activity as their integrity and accumulation are crucial parameters to consider when designing a suitable delivery system. Considering that they are in their early stages of research, we present various cargo-loaded peptide- and polymer nanoassemblies that promote nuclear targeting, emphasizing their potential to enhance therapeutic response. Finally, we briefly discuss further advancements for more precise and effective nuclear delivery.
Collapse
Affiliation(s)
- Michal Skowicki
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland; NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland
| | - Manuel Kraus
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland; NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland.
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland; NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland.
| |
Collapse
|
3
|
Tarvirdipour S, Skowicki M, Maffeis V, Abdollahi SN, Schoenenberger CA, Palivan CG. Peptide nanocarriers co-delivering an antisense oligonucleotide and photosensitizer elicit synergistic cytotoxicity. J Colloid Interface Sci 2024; 664:338-348. [PMID: 38479270 DOI: 10.1016/j.jcis.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Combination therapies demand co-delivery platforms with efficient entrapment of distinct payloads and specific delivery to cells and possibly organelles. Herein, we introduce the combination of two therapeutic modalities, gene and photodynamic therapy, in a purely peptidic platform. The simultaneous formation and cargo loading of the multi-micellar platform is governed by self-assembly at the nanoscale. The multi-micellar architecture of the nanocarrier and the positive charge of its constituent micelles offer controlled dual loading capacity with distinct locations for a hydrophobic photosensitizer (PS) and negatively charged antisense oligonucleotides (ASOs). Moreover, the nuclear localization signal (NLS) sequence built-in the peptide targets PS + ASO-loaded nanocarriers to the nucleus. Breast cancer cells treated with nanocarriers demonstrated photo-triggered enhancement of radical oxygen species (ROS) associated with increased cell death. Besides, delivery of ASO payloads resulted in up to 90 % knockdown of Bcl-2, an inhibitor of apoptosis that is overexpressed in more than half of all human cancers. Simultaneous delivery of PS and ASO elicited synergistic apoptosis to an extent that could not be reached by singly loaded nanocarriers or the free form of the drugs. Both, the distinct location of loaded compounds that prevents them from interfering with each other, and the highly efficient cellular delivery support the great potential of this versatile peptide platform in combination therapy.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel 4058, Switzerland
| | - Michal Skowicki
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel 4058, Switzerland; NCCR-Molecular Systems Engineering, Mattenstrasse 24a, Basel 4058, Switzerland
| | - Viviana Maffeis
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel 4058, Switzerland; NCCR-Molecular Systems Engineering, Mattenstrasse 24a, Basel 4058, Switzerland
| | - S Narjes Abdollahi
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel 4058, Switzerland
| | | | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel 4058, Switzerland; NCCR-Molecular Systems Engineering, Mattenstrasse 24a, Basel 4058, Switzerland.
| |
Collapse
|
4
|
Zhang YQ, Guo RR, Chen YH, Li TC, Du WZ, Xiang RW, Guan JB, Li YP, Huang YY, Yu ZQ, Cai Y, Zhang P, Ling GX. Ionizable drug delivery systems for efficient and selective gene therapy. Mil Med Res 2023; 10:9. [PMID: 36843103 PMCID: PMC9968649 DOI: 10.1186/s40779-023-00445-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/01/2023] [Indexed: 02/28/2023] Open
Abstract
Gene therapy has shown great potential to treat various diseases by repairing the abnormal gene function. However, a great challenge in bringing the nucleic acid formulations to the market is the safe and effective delivery to the specific tissues and cells. To be excited, the development of ionizable drug delivery systems (IDDSs) has promoted a great breakthrough as evidenced by the approval of the BNT162b2 vaccine for prevention of coronavirus disease 2019 (COVID-19) in 2021. Compared with conventional cationic gene vectors, IDDSs can decrease the toxicity of carriers to cell membranes, and increase cellular uptake and endosomal escape of nucleic acids by their unique pH-responsive structures. Despite the progress, there remain necessary requirements for designing more efficient IDDSs for precise gene therapy. Herein, we systematically classify the IDDSs and summarize the characteristics and advantages of IDDSs in order to explore the underlying design mechanisms. The delivery mechanisms and therapeutic applications of IDDSs are comprehensively reviewed for the delivery of pDNA and four kinds of RNA. In particular, organ selecting considerations and high-throughput screening are highlighted to explore efficiently multifunctional ionizable nanomaterials with superior gene delivery capacity. We anticipate providing references for researchers to rationally design more efficient and accurate targeted gene delivery systems in the future, and indicate ideas for developing next generation gene vectors.
Collapse
Affiliation(s)
- Yu-Qi Zhang
- Faculty of Medical Device, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Ran-Ran Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Yong-Hu Chen
- School of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Tian-Cheng Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Wen-Zhen Du
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Rong-Wu Xiang
- Faculty of Medical Device, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Ji-Bin Guan
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yu-Peng Li
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yuan-Yu Huang
- Advanced Research Institute of Multidisciplinary Science; School of Life Science; School of Medical Technology; Key Laboratory of Molecular Medicine and Biotherapy; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhi-Qiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523018, Guangdong, China
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| | - Gui-Xia Ling
- Faculty of Medical Device, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
5
|
Kunte N, Westerfield M, McGraw E, Choi J, Akinsipe T, Whitaker SK, Brannen A, Panizzi P, Tomich JM, Avila LA. Evaluation of transfection efficacy, biodistribution, and toxicity of branched amphiphilic peptide capsules (BAPCs) associated with mRNA. Biomater Sci 2022; 10:6980-6991. [PMID: 36254388 DOI: 10.1039/d2bm01314b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanoparticles (NPs) have been shown to be a suitable mRNA delivery platform by conferring protection against ribonucleases and facilitating cellular uptake. Several NPs have succeeded in delivering mRNA intranasally, intratracheally, and intramuscularly in preclinical settings. However, intravenous mRNA delivery has been less explored. Only a few NPs have been tested for systemic delivery of mRNA, many of which are formulated with polyethylene glycol (PEG). The incorporation of PEG presents some tradeoffs that must be carefully considered when designing a systemic delivery model. For example, while the addition of PEG may prolong circulation time by preventing early clearance by the mononuclear phagocytic system (MPS), it has also been reported that treating patients with PEGylated drugs can result in hypersensitivity reactions due to anti-PEG antibodies. Thus, it is desirable to have alternative PEG-free delivery methods for mRNA to avoid these adverse effects while preserving the beneficial effects. Our research group developed BAPCs (branched amphiphilic peptide capsules), a peptide-based nanoparticle that resists disruption by chaotropes, proteases, and elevated temperature, thus displaying significant stability and shelf-life. In this study, we demonstrated that similarly to PEG, mRNA shields the BAPC cationic surface to avoid early clearance by the MPS. Multispectral optoacoustic tomography (MSOT) and fluorescence reflectance imaging were imaging techniques used to analyze biodistribution within major MPS organs. Analysis of pro-inflammatory cytokine expression showed that BAPC-mRNA complexes do not cause chronic inflammation. Additionally, BAPCs enhance intracellular delivery of mRNA with negligible cytotoxicity or oxidative stress. These results might pave the way for future therapeutic applications of BAPCs as a delivery platform for systemic mRNA delivery.
Collapse
Affiliation(s)
- Nitish Kunte
- Department of Biological Sciences, Auburn University, Auburn, AL- 36849, USA.
| | - Matthew Westerfield
- Department of Biological Sciences, Auburn University, Auburn, AL- 36849, USA.
| | - Erin McGraw
- Department of Biological Sciences, Auburn University, Auburn, AL- 36849, USA.
| | - Jiyeong Choi
- School of Integrative Plant Science, Cornell University, NY- 14853, USA
| | - Tosin Akinsipe
- Department of Biological Sciences, Auburn University, Auburn, AL- 36849, USA.
| | - Susan K Whitaker
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, Kansas- 66506, USA
| | | | - Peter Panizzi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - John M Tomich
- School of Integrative Plant Science, Cornell University, NY- 14853, USA
| | - L Adriana Avila
- Department of Biological Sciences, Auburn University, Auburn, AL- 36849, USA.
| |
Collapse
|
6
|
Cui H, Zhang L, Zeng S, Wang Y, Li Z, Wang J, Chen Q. Charge-Reversible Pro-Ribonuclease Enveloped in Virus-like Synthetic Nanocapsules for Systemic Treatment of Intractable Glioma. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30493-30506. [PMID: 35657733 DOI: 10.1021/acsami.2c03763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We have tailored multifaceted chemistries into the manufacture of artificial virus-like delivery vehicles mimicking viral "intelligent" transportation pathways through sequential biological barriers; these vehicles can acquire the ability to dynamically "program transfer" to their target sites. To accomplish this, we created anionic pro-proteins, which facilitate charge reversal when subject to acidic endosomal pH; in this way, carboxylation reactions are performed on proteins with amine-reactive cis-aconitic anhydride. Electrostatic associations then initiate the envelopment of these pro-proteins into multilayered nanoarchitectural vehicles composed of multiple-segmental block copolycationic cyclic Arg-Gly-Asp (RGD)-poly(ethylene glycol)(PEG)-GPLGVRG-polylysine(thiol). Therefore, upon the pro-proteins' initial binding to the tumors via the protruding RGD ligands, the bio-inert PEG surroundings are detached through the enzymolysis of the intermediate GPLGVRG linkage by tumor-enriched matrix metalloproteinases, unveiling the cationic polylysine palisade and imparting intimate affinities to the anionic cytomembranes of the targeted tumors. Essentially, through their active endocytosis into the subcellular endosomal compartments, the pro-proteins are made capable of retrieving the original amine groups through a charge reversal decarboxylation process, consequently eliciting augmented charge densities (charge nonstoichiometric protein@polylysine(disulfide)) to disrupt the anionic endosomal membranes to facilitate translocation into the cytosol. Eventually, the active protein payloads can be liberated from nonstoichiometric protein@polylysine(thiol) by the disassembly of polylysine palisade upon the cleavage of disulfide crosslinking in response to the very high level of glutathione in the cytosol, thereby contributing toward extreme cytotoxic potency. Hence, our elaborated virus-mimicking platform has demonstrated potent antitumor efficacy through the systemic administration of ribonucleases, which will consequently lead to an innovative new therapeutic method by which proteins could reach intracellular targets.
Collapse
Affiliation(s)
- Hongyan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Liuwei Zhang
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Shuang Zeng
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Yu Wang
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Zhen Li
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Qixian Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
7
|
Tarvirdipour S, Skowicki M, Schoenenberger CA, Kapinos LE, Lim R, Benenson Y, Palivan CG. A self-assembling peptidic platform to boost the cellular uptake and nuclear delivery of oligonucleotides. Biomater Sci 2022; 10:4309-4323. [DOI: 10.1039/d2bm00826b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design of non-viral vectors that efficiently deliver genetic materials into cells, in particular to the nucleus, remains a major challenge in gene therapy and vaccine development. To tackle the...
Collapse
|
8
|
Das S, Das D. Rational Design of Peptide-based Smart Hydrogels for Therapeutic Applications. Front Chem 2021; 9:770102. [PMID: 34869218 PMCID: PMC8635208 DOI: 10.3389/fchem.2021.770102] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Peptide-based hydrogels have captivated remarkable attention in recent times and serve as an excellent platform for biomedical applications owing to the impressive amalgamation of unique properties such as biocompatibility, biodegradability, easily tunable hydrophilicity/hydrophobicity, modular incorporation of stimuli sensitivity and other functionalities, adjustable mechanical stiffness/rigidity and close mimicry to biological molecules. Putting all these on the same plate offers smart soft materials that can be used for tissue engineering, drug delivery, 3D bioprinting, wound healing to name a few. A plethora of work has been accomplished and a significant progress has been realized using these peptide-based platforms. However, designing hydrogelators with the desired functionalities and their self-assembled nanostructures is still highly serendipitous in nature and thus a roadmap providing guidelines toward designing and preparing these soft-materials and applying them for a desired goal is a pressing need of the hour. This review aims to provide a concise outline for that purpose and the design principles of peptide-based hydrogels along with their potential for biomedical applications are discussed with the help of selected recent reports.
Collapse
Affiliation(s)
- Saurav Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
9
|
Wei W, Tang J, Hu L, Feng Y, Li H, Yin C, Tang F. Experimental anti-tumor effect of emodin in suspension - in situ hydrogels formed with self-assembling peptide. Drug Deliv 2021; 28:1810-1821. [PMID: 34470553 PMCID: PMC8425708 DOI: 10.1080/10717544.2021.1971795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is a major cause of cancer-related deaths worldwide. Stimulus-sensitive hydrogels, which can be formed by responding to stimuli in the cancer microenvironment, have been widely studied as controlled-release carriers for hydrophobic anticancer drugs. In this study, self-assembling peptide RADA16-I was used to encapsulate the hydrophobic drug emodin (EM) under magnetic stirring to form a colloidal suspension, and the colloidal suspension (RADA16-I-EM) was introduced into environments with physiological pH/ionic strength to form hydrogels in situ. The results showed that RADA16-I had good cell compatibility and the RADA16-I-EM in situ hydrogels can obviously reduce the toxicity of EM to normal cells. In addition, compared with free EM (in water suspensions without peptide) at equivalent concentrations, RADA16-I-EM in situ hydrogels significantly reduced the survival fraction of LLC lung cancer cells, while increased the uptake of EM by the cells, and it also induced apoptosis and cell cycle arrest in the G2/M phase more significantly and reduced the migration, invasion, and clone abilities of the cells in vitro. The RADA16-I-EM in situ hydrogels also showed better cancer growth inhibition effects in cancer models (mice bearing LLC cells xenograft cancer), which induced cell apoptosis in the cancer tissue and reduced the toxic side effects of EM on normal tissues and organs in vivo compared with the free EM. It was revealed that RADA16-I can be exploited as a promising carrier for hydrophobic anticancer drugs and has the potential to improve the administration of anticancer drugs to treat cancer effectively with enhanced chemotherapy.
Collapse
Affiliation(s)
- Weipeng Wei
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, China
| | - Jianhua Tang
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Lei Hu
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, China
| | - Yujie Feng
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, China
| | - Hongfang Li
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, China
| | - Chengchen Yin
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, China
| | - Fushan Tang
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,The Key Laboratory of Clinical Pharmacy of Zunyi City, Zunyi Medical University, Zunyi, China
| |
Collapse
|
10
|
Zhao C, Chen H, Wang F, Zhang X. Amphiphilic self-assembly peptides: Rational strategies to design and delivery for drugs in biomedical applications. Colloids Surf B Biointerfaces 2021; 208:112040. [PMID: 34425532 DOI: 10.1016/j.colsurfb.2021.112040] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/21/2021] [Accepted: 08/12/2021] [Indexed: 01/01/2023]
Abstract
Amphiphilic self-assembling peptides are widely used in tissue and cell engineering, antimicrobials, drug-delivery systems and other biomedical fields due to their good biocompatibility, functionality, flexibility of design and synthesis, and tremendous potential as delivery carriers for drugs. Currently, the design and study of amphipathic peptides by a bottom-up method to develop new biomedical materials have become a hot topic. However, defined rules have not been established for the design and development of self-assembled peptides. Therefore, the focus of this review is to summarize and provide several rational strategies for the design and study of amphiphilic self-assembly peptides. In addition, this paper also describes the types and general self-assembling mechanism of amphipathic peptides, and outlines their applications in the delivery of hydrophobic drugs, nucleic acid drugs, peptide drugs and vaccines. Amphiphilic self-assembled peptides are expected to exploit new functional materials for drug delivery and other applications.
Collapse
Affiliation(s)
- Chunqian Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
| | - Hongyuan Chen
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan, 250021, People's Republic of China.
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
| | - Xinke Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
| |
Collapse
|
11
|
Tarvirdipour S, Skowicki M, Schoenenberger CA, Palivan CG. Peptide-Assisted Nucleic Acid Delivery Systems on the Rise. Int J Mol Sci 2021; 22:9092. [PMID: 34445799 PMCID: PMC8396486 DOI: 10.3390/ijms22169092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Concerns associated with nanocarriers' therapeutic efficacy and side effects have led to the development of strategies to advance them into targeted and responsive delivery systems. Owing to their bioactivity and biocompatibility, peptides play a key role in these strategies and, thus, have been extensively studied in nanomedicine. Peptide-based nanocarriers, in particular, have burgeoned with advances in purely peptidic structures and in combinations of peptides, both native and modified, with polymers, lipids, and inorganic nanoparticles. In this review, we summarize advances on peptides promoting gene delivery systems. The efficacy of nucleic acid therapies largely depends on cell internalization and the delivery to subcellular organelles. Hence, the review focuses on nanocarriers where peptides are pivotal in ferrying nucleic acids to their site of action, with a special emphasis on peptides that assist anionic, water-soluble nucleic acids in crossing the membrane barriers they encounter on their way to efficient function. In a second part, we address how peptides advance nanoassembly delivery tools, such that they navigate delivery barriers and release their nucleic acid cargo at specific sites in a controlled fashion.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- Department of Biosystem Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Michal Skowicki
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
12
|
Prasanna P, Rathee S, Upadhyay A, Sulakshana S. Nanotherapeutics in the treatment of acute respiratory distress syndrome. Life Sci 2021; 276:119428. [PMID: 33785346 PMCID: PMC7999693 DOI: 10.1016/j.lfs.2021.119428] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/12/2021] [Accepted: 03/20/2021] [Indexed: 01/08/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a form of oxygenation failure primarily characterized by rapid inflammation resulting from a direct pulmonary or indirect systemic insult. ARDS has been a major cause of death in the recent COVID-19 outbreak wherein asymptomatic respiratory tract infection progresses to ARDS from pneumonia have emphasized the need for a reliable therapy for the disease. The disease has a high mortality rate of approximately 30-50%. Despite the high mortality rate, a dearth of effective pharmacotherapy exists that demands extensive research in this area. The complex ARDS pathophysiology which remains to be understood completely and the multifactorial etiology of the disease has led to the poor diagnosis, impeded drug-delivery to the deeper pulmonary tissues, and delayed treatment of the ARDS patients. Besides, critically ill patients are unable to tolerate the off-target side effects. The vast domain of nanobiotechnology presents several drug delivery systems offering numerous benefits such as targeted delivery, prolonged drug release, and uniform drug-distribution. The present review presents a brief insight into the ARDS pathophysiology and summarizes conventional pharmacotherapies available to date. Furthermore, the review provides an updated report of major developments in the nanomedicinal approaches for the treatment of ARDS. We also discuss different nano-formulations studied extensively in the ARDS preclinical models along with underlining the advantages as well as challenges that need to be addressed in the future.
Collapse
Affiliation(s)
- Pragya Prasanna
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar 844102, India
| | - Shweta Rathee
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana 131028, India
| | - Arun Upadhyay
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sulakshana Sulakshana
- Department of Anesthesiology and Critical Care, Sri Ram Murti Smarak Institute of Medical Sciences (SRMS-IMS), Bareilly, Uttar Pradesh 243202, India.
| |
Collapse
|
13
|
Delfi M, Sartorius R, Ashrafizadeh M, Sharifi E, Zhang Y, De Berardinis P, Zarrabi A, Varma RS, Tay FR, Smith BR, Makvandi P. Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy. NANO TODAY 2021; 38:101119. [PMID: 34267794 PMCID: PMC8276870 DOI: 10.1016/j.nantod.2021.101119] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Self-assembled peptides and proteins possess tremendous potential as targeted drug delivery systems and key applications of these well-defined nanostructures reside in anti-cancer therapy. Peptides and proteins can self-assemble into nanostructures of diverse sizes and shapes in response to changing environmental conditions such as pH, temperature, ionic strength, as well as host and guest molecular interactions; their countless benefits include good biocompatibility and high loading capacity for hydrophobic and hydrophilic drugs. These self-assembled nanomaterials can be adorned with functional moieties to specifically target tumor cells. Stimuli-responsive features can also be incorporated with respect to the tumor microenvironment. This review sheds light on the growing interest in self-assembled peptides and proteins and their burgeoning applications in cancer treatment and immunotherapy.
Collapse
Affiliation(s)
- Masoud Delfi
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Via Cintia, Naples 80126, Italy
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples 80131, Italy
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, 6517838736, Hamadan, Iran
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples 80125, Italy
| | - Yapei Zhang
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | | | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA 30912, USA
| | - Bryan Ronain Smith
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Radiology and the Molecular Imaging Program, Stanford University, Stanford, CA, 94305, USA
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|
14
|
Xie X, Zheng T, Li W. Recent Progress in Ionic Coassembly of Cationic Peptides and Anionic Species. Macromol Rapid Commun 2020; 41:e2000534. [PMID: 33225490 DOI: 10.1002/marc.202000534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/10/2020] [Indexed: 12/25/2022]
Abstract
Peptide assembly has been extensively exploited as a promising platform for the creation of hierarchical nanostructures and tailor-made bioactive materials. Ionic coassembly of cationic peptides and anionic species is paving the way to provide particularly important contribution to this topic. In this review, the recent progress of ionic coassembly soft materials derived from the electrostatic coupling between cationic peptides and anionic species in aqueous solution is systematically summarized. The presentation of this review starts from a brief background on the general importance and advantages of peptide-based ionic coassembly. After that, diverse combinations of cationic peptides with small anions, macro- and/or oligo-anions, anionic polymers, and inorganic polyoxometalates are described. Emphasis is placed on the hierarchical structures, value-added properties, and applications. The molecular design of cationic peptides and the general principles behind the ionic coassembled structures are discussed. It is summarized that the combination of interesting and unique characteristics that arise both from the chemical diversity of peptides and the wide range of anionic species may contribute in a variety of output, including drug delivery, tissue engineering, gene transfection, and antibacterial activity. The emergent new phenomena and findings are illustrated. Finally, the outlook for the peptide-based ionic coassembly systems is also presented.
Collapse
Affiliation(s)
- Xiaoming Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjing Avenue 2699, Changchun, 130012, China.,Department of Chemistry, Xinzhou Teachers' University, Xinzhou, Shanxi, 034000, China
| | - Tingting Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjing Avenue 2699, Changchun, 130012, China
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjing Avenue 2699, Changchun, 130012, China
| |
Collapse
|
15
|
Tarvirdipour S, Huang X, Mihali V, Schoenenberger CA, Palivan CG. Peptide-Based Nanoassemblies in Gene Therapy and Diagnosis: Paving the Way for Clinical Application. Molecules 2020; 25:E3482. [PMID: 32751865 PMCID: PMC7435460 DOI: 10.3390/molecules25153482] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022] Open
Abstract
Nanotechnology approaches play an important role in developing novel and efficient carriers for biomedical applications. Peptides are particularly appealing to generate such nanocarriers because they can be rationally designed to serve as building blocks for self-assembling nanoscale structures with great potential as therapeutic or diagnostic delivery vehicles. In this review, we describe peptide-based nanoassemblies and highlight features that make them particularly attractive for the delivery of nucleic acids to host cells or improve the specificity and sensitivity of probes in diagnostic imaging. We outline the current state in the design of peptides and peptide-conjugates and the paradigms of their self-assembly into well-defined nanostructures, as well as the co-assembly of nucleic acids to form less structured nanoparticles. Various recent examples of engineered peptides and peptide-conjugates promoting self-assembly and providing the structures with wanted functionalities are presented. The advantages of peptides are not only their biocompatibility and biodegradability, but the possibility of sheer limitless combinations and modifications of amino acid residues to induce the assembly of modular, multiplexed delivery systems. Moreover, functions that nature encoded in peptides, such as their ability to target molecular recognition sites, can be emulated repeatedly in nanoassemblies. Finally, we present recent examples where self-assembled peptide-based assemblies with "smart" activity are used in vivo. Gene delivery and diagnostic imaging in mouse tumor models exemplify the great potential of peptide nanoassemblies for future clinical applications.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
- Department of Biosystem Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Xinan Huang
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
| | - Voichita Mihali
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
| |
Collapse
|
16
|
Mello LR, Hamley IW, Castelletto V, Garcia BBM, Lourenço TC, Vassiliades SV, Alves WA, Han SW, Silva ER. Self-assembly and intracellular delivery of DNA by a truncated fragment derived from the Trojan peptide Penetratin. SOFT MATTER 2020; 16:4746-4755. [PMID: 32329496 DOI: 10.1039/d0sm00347f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Penetratin is a short Trojan peptide that attracts great interest in biomedical research for its capacity to translocate biological membranes. Herein, we study in detail both self-assembly and intracellular delivery of DNA by the heptamer KIWFQNR, a truncated peptide derived from Penetratin. This shortened sequence possesses a unique design with bolaamphiphilic characteristics that preserves the longest noncationic amino acid portion found in Penetratin. These features convey amphipathicity to assist self-assembly and make it a suitable model for exploring the role of hydrophobic residues for peptide interaction and cell uptake. We show that the fragment forms peptiplexes (i.e., peptide-DNA complexes), and aggregates into long nanofibers with clear β-sheet signature. The supramolecular structure of nanofibers is likely composed of DNA cores surrounded by a peptide shell to which the double helix behaves as a template and induces fibrillization. A nucleation and growth mechanism proceeding through liquid-liquid phase separation of coacervates is proposed for describing the self-assembly of peptiplexes. We also demonstrate that peptiplexes deliver double-stranded 200 bp DNA into HeLa cells, indicating its potential for preparing non-viral vectors for oligonucleotides through noncovalent strategies. Since the main structural features of native Penetratin are conserved in this simpler fragment, our findings also highlight the role of uncharged amino acids for structuration, and thus for the ability of Penetratin to cross cell membranes.
Collapse
Affiliation(s)
- Lucas R Mello
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|