1
|
Hu S, Zhang Q, Ou Z, Dang Y. Particle sorting method based on swirl induction. J Chem Phys 2023; 159:174901. [PMID: 37909455 DOI: 10.1063/5.0170783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023] Open
Abstract
Fluid-based methods for particle sorting demonstrate increasing appeal in many areas of biosciences due to their biocompatibility and cost-effectiveness. Herein, we construct a microfluidic sorting system based on a swirl microchip. The impact of microchannel velocity on the swirl stagnation point as well as particle movement is analyzed through simulation and experiment. Moreover, the quantitative mapping relationship between flow velocity and particle position distribution is established. With this foundation established, a particle sorting method based on swirl induction is proposed. Initially, the particle is captured by a swirl. Then, the Sorting Region into which the particle aims to enter is determined according to the sorting condition and particle characteristic. Subsequently, the velocities of the microchannels are adjusted to control the swirl, which will induce the particle to enter its corresponding Induction Region. Thereafter, the velocities are adjusted again to change the fluid field and drive the particle into a predetermined Sorting Region, hence the sorting is accomplished. We have extensively conducted experiments taking particle size or color as a sorting condition. An outstanding sorting success rate of 98.75% is achieved when dealing with particles within the size range of tens to hundreds of micrometers in radius, which certifies the effectiveness of the proposed sorting method. Compared to the existing sorting techniques, the proposed method offers greater flexibility. The adjustment of sorting conditions or particle parameters no longer requires complex chip redesign, because such sorting tasks can be successfully realized through simple microchannel velocities control.
Collapse
Affiliation(s)
- Shuai Hu
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| | - Qin Zhang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhiming Ou
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yanping Dang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
2
|
George A, Akbaridoust F, Zainal Abidin NA, Nesbitt WS, Marusic I. Characterisation of hydrodynamic trapping in microfluidic cross-slot devices for high strain rate applications. LAB ON A CHIP 2023. [PMID: 37305977 DOI: 10.1039/d3lc00256j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrodynamic trapping of a particle or cluster of particles based on contact and non-contact approaches has brought prominent insights to micro-nano scale applications. Of the non-contact methods, image-based real-time control in cross-slot microfluidic devices is one of the most promising potential platform for single cellular assays. Here, we report results from experiments conducted in two cross-slot microfluidic channels of different widths, with varying real-time delay of the control algorithm and different magnification. Sustained trapping of 5 μm diameter particles was achieved with high strain rates, of order 102 s-1, higher than in any previous studies. Our experiments show that the maximum attainable strain rate is a function of the real-time delay of the control algorithm and the particle resolution (pixel/μm). Therefore, we anticipate that with further reduced time delays and enhanced particle resolution, considerably higher strain rates can be attained, opening the platform to single cellular assay studies where very high strain rates are required.
Collapse
Affiliation(s)
- Aravind George
- Department of Mechanical Engineering, University of Melbourne, VIC 3010, Australia.
| | - Farzan Akbaridoust
- Department of Mechanical Engineering, University of Melbourne, VIC 3010, Australia.
| | - Nurul A Zainal Abidin
- The Australian Centre for Blood Diseases, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Warwick S Nesbitt
- The Australian Centre for Blood Diseases, Monash University, 99 Commercial Road, Melbourne, VIC 3004, Australia
| | - Ivan Marusic
- Department of Mechanical Engineering, University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
3
|
Fessler F, Sharma V, Muller P, Stocco A. Entry of microparticles into giant lipid vesicles by optical tweezers. Phys Rev E 2023; 107:L052601. [PMID: 37328973 DOI: 10.1103/physreve.107.l052601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/20/2023] [Indexed: 06/18/2023]
Abstract
Entry of micro- or nanosized objects into cells or vesicles made of lipid membranes occurs in many processes such as entry of viruses into host cells, microplastics pollution, drug delivery, or biomedical imaging. Here we investigate the microparticle crossing of lipid membranes in giant unilamellar vesicles in the absence of strong binding interactions (e.g., streptavidin-biotin binding). In these conditions, we observe that organic and inorganic particles can always penetrate inside the vesicles provided an external piconewton force is applied and for relatively low membrane tensions. In the limit of vanishing adhesion, we identify the role of the membrane area reservoir and show that a force minimum exists when the particle size is comparable to the bendocapillary length.
Collapse
Affiliation(s)
- Florent Fessler
- Institut Charles Sadron, UPR No. 22, CNRS, 23 Rue du Loess, 67200 Strasbourg, France
| | - Vaibhav Sharma
- Institut Charles Sadron, UPR No. 22, CNRS, 23 Rue du Loess, 67200 Strasbourg, France
| | - Pierre Muller
- Institut Charles Sadron, UPR No. 22, CNRS, 23 Rue du Loess, 67200 Strasbourg, France
| | - Antonio Stocco
- Institut Charles Sadron, UPR No. 22, CNRS, 23 Rue du Loess, 67200 Strasbourg, France
| |
Collapse
|
4
|
Bezrukov A, Galyametdinov Y. Dynamic Flow Control over Optical Properties of Liquid Crystal-Quantum Dot Hybrids in Microfluidic Devices. MICROMACHINES 2023; 14:mi14050990. [PMID: 37241613 DOI: 10.3390/mi14050990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023]
Abstract
In this paper, we report developing approaches to tuning the optical behavior of microfluidic devices by infusing smart hybrids of liquid crystal and quantum dots into microchannel confinement. We characterize the optical responses of liquid crystal-quantum dot composites to polarized and UV light in single-phase microflows. In the range of flow velocities up to 10 mm/s, the flow modes of microfluidic devices were found to correlate with the orientation of liquid crystals, dispersion of quantum dots in homogeneous microflows and the resulting luminescence response of these dynamic systems to UV excitation. We developed a Matlab algorithm and script to quantify this correlation by performing an automated analysis of microscopy images. Such systems may have application potential as optically responsive sensing microdevices with integrated smart nanostructural components, parts of lab-on-a-chip logic circuits, or diagnostic tools for biomedical instruments.
Collapse
Affiliation(s)
- Artem Bezrukov
- Department of Physical and Colloid Chemistry, Kazan National Research Technological University, 420015 Kazan, Russia
| | - Yury Galyametdinov
- Department of Physical and Colloid Chemistry, Kazan National Research Technological University, 420015 Kazan, Russia
| |
Collapse
|
5
|
Xiao W, Liu K, Lowengrub J, Li S, Zhao M. Three-dimensional numerical study on wrinkling of vesicles in elongation flow based on the immersed boundary method. Phys Rev E 2023; 107:035103. [PMID: 37072945 DOI: 10.1103/physreve.107.035103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/15/2023] [Indexed: 04/20/2023]
Abstract
We study the wrinkling dynamics of three-dimensional vesicles in a time-dependent elongation flow by utilizing an immersed boundary method. For a quasispherical vesicle, our numerical results well match the predictions of perturbation analysis, where similar exponential relationships between wrinkles' characteristic wavelength and the flow strength are observed. Using the same parameters as in the experiments by Kantsler et al. [V. Kantsler et al., Phys. Rev. Lett. 99, 178102 (2007)0031-900710.1103/PhysRevLett.99.178102], our simulations of an elongated vesicle are in good agreement with their results. In addition, we get rich three-dimensional morphological details, which are favorable to comprehend the two-dimensional snapshots. This morphological information helps identify wrinkle patterns. We analyze the morphological evolution of wrinkles using spherical harmonics. We find discrepancies in elongated vesicle dynamics between simulations and perturbation analysis, highlighting the importance of the nonlinear effects. Finally, we investigate the unevenly distributed local surface tension, which largely determines the position of wrinkles excited on the vesicle membrane.
Collapse
Affiliation(s)
- Wang Xiao
- School of Mathematics and Statistics, Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kai Liu
- College of Education for the Future, Beijing Normal University, Zhuhai 519087, China
| | - John Lowengrub
- Department of Mathematics, University of California Irvine, Irvine, California 92697, USA
| | - Shuwang Li
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - Meng Zhao
- School of Mathematics and Statistics, Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
6
|
Salipante PF. Microfluidic techniques for mechanical measurements of biological samples. BIOPHYSICS REVIEWS 2023; 4:011303. [PMID: 38505816 PMCID: PMC10903441 DOI: 10.1063/5.0130762] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/30/2022] [Indexed: 03/21/2024]
Abstract
The use of microfluidics to make mechanical property measurements is increasingly common. Fabrication of microfluidic devices has enabled various types of flow control and sensor integration at micrometer length scales to interrogate biological materials. For rheological measurements of biofluids, the small length scales are well suited to reach high rates, and measurements can be made on droplet-sized samples. The control of flow fields, constrictions, and external fields can be used in microfluidics to make mechanical measurements of individual bioparticle properties, often at high sampling rates for high-throughput measurements. Microfluidics also enables the measurement of bio-surfaces, such as the elasticity and permeability properties of layers of cells cultured in microfluidic devices. Recent progress on these topics is reviewed, and future directions are discussed.
Collapse
Affiliation(s)
- Paul F. Salipante
- National Institute of Standards and Technology, Polymers and Complex Fluids Group, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
7
|
Wu F, Lin J, Wang L, Lin S. Polymer Vesicles in a Nanochannel under Flow Fields: A DPD Simulation Study. MACROMOL THEOR SIMUL 2022. [DOI: 10.1002/mats.202200027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fangsheng Wu
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
8
|
Faizi HA, Dimova R, Vlahovska PM. A vesicle microrheometer for high-throughput viscosity measurements of lipid and polymer membranes. Biophys J 2022; 121:910-918. [PMID: 35176271 PMCID: PMC8943812 DOI: 10.1016/j.bpj.2022.02.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/08/2022] [Accepted: 02/09/2022] [Indexed: 11/02/2022] Open
Abstract
Viscosity is a key property of cell membranes that controls mobility of embedded proteins and membrane remodeling. Measuring it is challenging because existing approaches involve complex experimental designs and/or models, and the applicability of some methods is limited to specific systems and membrane compositions. As a result there is scarcity of systematic data, and the reported values for membrane viscosity vary by orders of magnitude for the same system. Here, we show how viscosity of membranes can be easily obtained from the transient deformation of giant unilamellar vesicles. The approach enables a noninvasive, probe-independent, and high-throughput measurement of the viscosity of membranes made of lipids or polymers with a wide range of compositions and phase state. Using this novel method, we have collected a significant amount of data that provides insights into the relation between membrane viscosity, composition, and structure.
Collapse
Affiliation(s)
- Hammad A Faizi
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany
| | - Petia M Vlahovska
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois.
| |
Collapse
|
9
|
Liu D, Zhang Z, Wang R, Hu J. Stability and Deformation of Vesicles in a Cylindrical Flow. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:629-637. [PMID: 34994199 DOI: 10.1021/acs.langmuir.1c02000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, we used dissipative particle dynamics to study the stability, deformation, and rupture of polymer vesicles confined in cylindrical channels under the flow field. The morphological evolution, elongation, and rupture of vesicles and the corresponding mechanisms were intensively investigated. Bullet-like vesicles, leaking vesicles, spherical micelles, hamburger-like micelles, and bilayers were observed by changing the degree of confinement and dimensionless shear rate. We found that increasing the dimensionless shear rate and the degree of confinement can cause the deformation or rupture of polymeric vesicles. The asphericity parameter was utilized to describe the degree of elongation of vesicles deviating from the sphere in the direction of the flow. The results show that the aggregates are more likely to be spherical when the confinement is weak, while they become elongated bullet-like shapes when the confinement is strong. The investigation of dynamics reveals that the degree of confinement and the dimensionless shear rate can affect the chain stretching and reorganization during the process of vesicle elongation. Furthermore, the rupture time of the vesicle shows a nonlinear decrease with an increase in the dimensionless shear rate, and the confinement also contributes to the rupture. The results are very useful for guiding the application of vesicles in a flow environment.
Collapse
Affiliation(s)
- Dan Liu
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhihao Zhang
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Rong Wang
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jinglei Hu
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Kumar D, Schroeder CM. Nonlinear Transient and Steady State Stretching of Deflated Vesicles in Flow. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13976-13984. [PMID: 34813335 DOI: 10.1021/acs.langmuir.1c01275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Membrane-bound vesicles and organelles exhibit a wide array of nonspherical shapes at equilibrium, including biconcave and tubular morphologies. Despite recent progress, the stretching dynamics of deflated vesicles is not fully understood, particularly far from equilibrium where complex nonspherical shapes undergo large deformations in flow. Here, we directly observe the transient and steady-state nonlinear stretching dynamics of deflated vesicles in extensional flow using a Stokes trap. Automated flow control is used to observe vesicle dynamics over a wide range of flow rates, shape anisotropy, and viscosity contrast. Our results show that deflated vesicle membranes stretch into highly deformed shapes in flow above a critical capillary number Cac1. We further identify a second critical capillary number Cac2, above which vesicle stretch diverges in flow. Vesicles are robust to multiple nonlinear stretch-relax cycles, evidenced by relaxation of dumbbell-shaped vesicles containing thin lipid tethers following flow cessation. An analytical model is developed for vesicle deformation in flow, which enables comparison of nonlinear steady-state stretching results with theories for different reduced volumes. Our results show that the model captures the steady-state stretching of moderately deflated vesicles; however, it underpredicts the steady-state nonlinear stretching of highly deflated vesicles. Overall, these results provide a new understanding of the nonlinear stretching dynamics and membrane mechanics of deflated vesicles in flow.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Charles M Schroeder
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Drab M, Pandur Ž, Penič S, Iglič A, Kralj-Iglič V, Stopar D. A Monte Carlo study of giant vesicle morphologies in nonequilibrium environments. Biophys J 2021; 120:4418-4428. [PMID: 34506775 DOI: 10.1016/j.bpj.2021.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/22/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Abstract
It is known that giant vesicles undergo dynamic morphological changes when exposed to a detergent. The solubilization process may take multiple pathways. In this work, we identify lipid vesicle shape dynamics before the solubilization of 1,2-dioleoyl-sn-glycero-3-phosphocholine giant vesicles with Triton X-100 (TR) detergent. The violent lipid vesicle dynamics was observed with laser confocal scanning microscopy and was qualitatively explained via a numerical simulation. A three-dimensional Monte Carlo scheme was constructed that emulated the nonequilibrium conditions at the beginning stages of solubilization, accounting for a gradual addition of TR detergent molecules into the lipid bilayers. We suggest that the main driving factor for morphology change in lipid vesicles is the associative tendency of the TR molecules, which induces spontaneous curvature of the detergent inclusions, an intrinsic consequence of their molecular shape. The majority of the observed lipid vesicle shapes in the experiments were found to correspond very well to the numerically calculated shapes in the phase space of possible solutions. The results give an insight into the early stages of lipid vesicle solubilization by amphiphilic molecules, which is nonequilibrium in nature and very difficult to study.
Collapse
Affiliation(s)
- Mitja Drab
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia; Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Žiga Pandur
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Samo Penič
- Laboratory of Bioelectromagnetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia; Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Veronika Kralj-Iglič
- Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - David Stopar
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
12
|
Yu Y, Graham MD. Coil-stretch-like transition of elastic sheets in extensional flows. SOFT MATTER 2021; 17:543-553. [PMID: 33179707 DOI: 10.1039/d0sm01630f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The conformation of a long linear polymer dissolved in fluid and exposed to an extensional flow is well-known to exhibit a "coil-stretch" transition, which for sufficiently long chains can lead to bistability. The present work reports computations indicating that an analogous "compact-stretched" transition arises in the dynamics of a thin elastic sheet. Sheets of nominally circular, square or rectangular shape are simulated in planar and biaxial flows using a finite element method for the sheet conformations and a regularized Stokeslet method for the fluid flow. If a neo-Hookean constitutive model is used for the sheet elasticity, the sheets will stretch without bound once a critical extension rate, as characterized nondimensionally by a capillary number, is exceeded. Nonlinear elasticity, represented with the Yeoh model, arrests the stretching, leading to a highly-stretched steady state once the critical capillary number is exceeded. For all shapes and in both planar and biaxial extension, a parameter regime exists in which both weakly stretched (compact) and strongly stretched states can be found, depending on initial conditions. I.e. this parameter regime displays bistability. As in the long-chain polymer case, the bistable behavior arises from the hydrodynamic interaction between distant elements of the sheet, and vanishes if these interactions are artificially screened by use of a Brinkman model for the fluid motion. While the sheets can transiently display wrinkled shapes, all final shapes in planar and biaxial extension are planar.
Collapse
Affiliation(s)
- Yijiang Yu
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA.
| | - Michael D Graham
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA.
| |
Collapse
|
13
|
|
14
|
Kumar D, Richter CM, Schroeder CM. Double-mode relaxation of highly deformed anisotropic vesicles. Phys Rev E 2020; 102:010605. [PMID: 32794982 DOI: 10.1103/physreve.102.010605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Lipid vesicles are known to undergo complex conformational transitions, but it remains challenging to systematically characterize nonequilibrium membrane dynamics in flow. Here, we report the direct observation of anisotropic vesicle relaxation from highly deformed shapes using a Stokes trap. Vesicle shape relaxation is described by two distinct characteristic timescales governed by the bending modulus and membrane tension. Interestingly, the fast double-mode timescale is found to depend on vesicle deflation or reduced volume. Experimental results are well described by a viscoelastic model of a deformed membrane. Overall, these results show that vesicle relaxation is governed by an interplay between membrane elastic moduli, surface tension, and vesicle deflation.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Channing M Richter
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Charles M Schroeder
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|