1
|
Monteiro HBN, Tartakovsky DM. A meshless stochastic method for Poisson-Nernst-Planck equations. J Chem Phys 2024; 161:054106. [PMID: 39087897 DOI: 10.1063/5.0223018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
A plethora of biological, physical, and chemical phenomena involve transport of charged particles (ions). Its continuum-scale description relies on the Poisson-Nernst-Planck (PNP) system, which encapsulates the conservation of mass and charge. The numerical solution of these coupled partial differential equations is challenging and suffers from both the curse of dimensionality and difficulty in efficiently parallelizing. We present a novel particle-based framework to solve the full PNP system by simulating a drift-diffusion process with time- and space-varying drift. We leverage Green's functions, kernel-independent fast multipole methods, and kernel density estimation to solve the PNP system in a meshless manner, capable of handling discontinuous initial states. The method is embarrassingly parallel, and the computational cost scales linearly with the number of particles and dimension. We use a series of numerical experiments to demonstrate both the method's convergence with respect to the number of particles and computational cost vis-à-vis a traditional partial differential equation solver.
Collapse
Affiliation(s)
- Henrique B N Monteiro
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, California 94305, USA
| | - Daniel M Tartakovsky
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, California 94305, USA
- Department of Energy Science and Engineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
2
|
Kamsma TM, Boon WQ, Spitoni C, van Roij R. Unveiling the capabilities of bipolar conical channels in neuromorphic iontronics. Faraday Discuss 2023; 246:125-140. [PMID: 37404026 PMCID: PMC10568261 DOI: 10.1039/d3fd00022b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/07/2023] [Indexed: 07/06/2023]
Abstract
Conical channels filled with an aqueous electrolyte have been proposed as promising candidates for iontronic neuromorphic circuits. This is facilitated by a novel analytical model for the internal channel dynamics [T. M. Kamsma, W. Q. Boon, T. ter Rele, C. Spitoni and R. van Roij, Phys. Rev. Lett., 2023, 130(26), 268401], the relative ease of fabrication of conical channels, and the wide range of achievable memory retention times by varying the channel lengths. In this work, we demonstrate that the analytical model for conical channels can be generalized to channels with an inhomogeneous surface charge distribution, which we predict to exhibit significantly stronger current rectification and more pronounced memristive properties in the case of bipolar channels, i.e. channels where the tip and base carry a surface charge of opposite sign. Additionally, we show that the use of bipolar conical channels in a previously proposed iontronic circuit features hallmarks of neuronal communication, such as all-or-none action potentials and spike train generation. Bipolar channels allow, however, for circuit parameters in the range of their biological analogues, and exhibit membrane potentials that match well with biological mammalian action potentials, further supporting their potential biocompatibility.
Collapse
Affiliation(s)
- T M Kamsma
- Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
- Mathematical Institute, Utrecht University, Budapestlaan 6, 3584 CD Utrecht, The Netherlands
| | - W Q Boon
- Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| | - C Spitoni
- Mathematical Institute, Utrecht University, Budapestlaan 6, 3584 CD Utrecht, The Netherlands
| | - R van Roij
- Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| |
Collapse
|
3
|
Aarts M, Boon WQ, Cuénod B, Dijkstra M, van Roij R, Alarcon-Llado E. Ion Current Rectification and Long-Range Interference in Conical Silicon Micropores. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56226-56236. [PMID: 36484483 PMCID: PMC9782324 DOI: 10.1021/acsami.2c11467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Fluidic devices exhibiting ion current rectification (ICR), or ionic diodes, are of broad interest for applications including desalination, energy harvesting, and sensing, among others. For such applications a large conductance is desirable, which can be achieved by simultaneously using thin membranes and wide pores. In this paper we demonstrate ICR in micrometer sized conical channels in a thin silicon membrane with pore diameters comparable to the membrane thickness but both much larger than the electrolyte screening length. We show that for these pores the entrance resistance is key not only to Ohmic conductance around 0 V but also for understanding ICR, both of which we measure experimentally and capture within a single analytic theoretical framework. The only fit parameter in this theory is the membrane surface potential, for which we find that it is voltage dependent and its value is excessively large compared to the literature. From this we infer that surface charge outside the pore strongly contributes to the observed Ohmic conductance and rectification by a different extent. We experimentally verify this hypothesis in a small array of pores and find that ICR vanishes due to pore-pore interactions mediated through the membrane surface, while Ohmic conductance around 0 V remains unaffected. We find that the pore-pore interaction for ICR is set by a long-ranged decay of the concentration which explains the surprising finding that the ICR vanishes for even a sparsely populated array with a pore-pore spacing as large as 7 μm.
Collapse
Affiliation(s)
- Mark Aarts
- Center
for Nanophotonics, AMOLF, Science Park 109, 1098 XGAmsterdam, Netherlands
| | - Willem Q. Boon
- Institute
for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CCUtrecht, Netherlands
| | - Blaise Cuénod
- Center
for Nanophotonics, AMOLF, Science Park 109, 1098 XGAmsterdam, Netherlands
| | - Marjolein Dijkstra
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, Netherlands
| | - René van Roij
- Institute
for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CCUtrecht, Netherlands
| | - Esther Alarcon-Llado
- Center
for Nanophotonics, AMOLF, Science Park 109, 1098 XGAmsterdam, Netherlands
| |
Collapse
|
4
|
Manipulating mechanism of the electrokinetic flow of ionic liquids confined in silica nanochannel. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Mejri A, Herlem G, Picaud F. From Behavior of Water on Hydrophobic Graphene Surfaces to Ultra-Confinement of Water in Carbon Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:306. [PMID: 33504024 PMCID: PMC7911377 DOI: 10.3390/nano11020306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
In recent years and with the achievement of nanotechnologies, the development of experiments based on carbon nanotubes has allowed to increase the ionic permeability and/or selectivity in nanodevices. However, this new technology opens the way to many questionable observations, to which theoretical work can answer using several approximations. One of them concerns the appearance of a negative charge on the carbon surface, when the latter is apparently neutral. Using first-principles density functional theory combined with molecular dynamics, we develop here several simulations on different systems in order to understand the reactivity of the carbon surface in low or ultra-high confinement. According to our calculations, there is high affinity of the carbon atom to the hydrogen ion in every situation, and to a lesser extent for the hydroxyl ion. The latter can only occur when the first hydrogen attack has been achieved. As a consequence, the functionalization of the carbon surface in the presence of an aqueous medium is activated by its protonation, then allowing the reactivity of the anion.
Collapse
Affiliation(s)
| | | | - Fabien Picaud
- Laboratoire de Nanomédecine, Imagerie et Thérapeutiques, EA4662, UFR Sciences et Techniques, Centre Hospitalier Universitaire et Université de Bourgogne Franche Comté, 16 Route de Gray, 25030 Besançon, France; (A.M.); (G.H.)
| |
Collapse
|
6
|
Herrero C, Tocci G, Merabia S, Joly L. Fast increase of nanofluidic slip in supercooled water: the key role of dynamics. NANOSCALE 2020; 12:20396-20403. [PMID: 33021296 DOI: 10.1039/d0nr06399a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanofluidics is an emerging field offering innovative solutions for energy harvesting and desalination. The efficiency of these applications depends strongly on liquid-solid slip, arising from a favorable ratio between viscosity and interfacial friction. Using molecular dynamics simulations, we show that wall slip increases strongly when water is cooled below its melting point. For water on graphene, the slip length is multiplied by up to a factor of five and reaches 230 nm at the lowest simulated temperature, T ∼ 225 K; experiments in nanopores can reach much lower temperatures and could reveal even more drastic changes. The predicted fast increase in water slip can also be detected at supercoolings reached experimentally in bulk water, as well as in droplets flowing on anti-icing surfaces. We explain the anomalous slip behavior in the supercooled regime by a decoupling between viscosity and bulk density relaxation dynamics, and we rationalize the wall-type dependence of the enhancement in terms of interfacial density relaxation dynamics. While providing fundamental insights on the molecular mechanisms of hydrodynamic transport in both interfacial and bulk water in the supercooled regime, this study is relevant to the design of anti-icing surfaces, could help explain the subtle phase and dynamical behaviors of supercooled confined water, and paves the way to explore new behaviors in supercooled nanofluidic systems.
Collapse
Affiliation(s)
- Cecilia Herrero
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - Gabriele Tocci
- Department of Chemistry, Universität Zürich, 8057 Zürich, Switzerland
| | - Samy Merabia
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - Laurent Joly
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France. and Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|
7
|
Xie Y, Fu L, Niehaus T, Joly L. Liquid-Solid Slip on Charged Walls: The Dramatic Impact of Charge Distribution. PHYSICAL REVIEW LETTERS 2020; 125:014501. [PMID: 32678629 DOI: 10.1103/physrevlett.125.014501] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/24/2020] [Accepted: 06/12/2020] [Indexed: 05/25/2023]
Abstract
Nanofluidic systems show great promise for applications in energy conversion, where their performance can be enhanced by nanoscale liquid-solid slip. However, efficiency is also controlled by surface charge, which is known to reduce slip. Combining molecular dynamics simulations and analytical developments, we show the dramatic impact of surface charge distribution on the slip-charge coupling. Homogeneously charged graphene exhibits a very favorable slip-charge relation (rationalized with a new theoretical model correcting some weaknesses of the existing ones), leading to giant electrokinetic energy conversion. In contrast, slip is strongly affected on heterogeneously charged surfaces, due to the viscous drag induced by counterions trapped on the surface. In that case slip should depend on the detailed physical chemistry of the interface controlling the fraction of bound ions. Our numerical results and theoretical models provide new fundamental insight into the molecular mechanisms of liquid-solid slip, and practical guidelines for searching new functional interfaces with optimal energy conversion properties, e.g., for blue energy or waste heat harvesting.
Collapse
Affiliation(s)
- Yanbo Xie
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xian, 710072, China
| | - Li Fu
- Univ Lyon, Ecole Centrale de Lyon, Laboratoire de Tribologie et Dynamique des Systèmes, UMR 5513, 36 avenue Guy de Collongue, 69134 Ecully Cedex, France
| | - Thomas Niehaus
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France
| | - Laurent Joly
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|