1
|
Fylling C, Tamayo J, Gopinath A, Theillard M. Multi-population dissolution in confined active fluids. SOFT MATTER 2024; 20:1392-1409. [PMID: 38305767 DOI: 10.1039/d3sm01196h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Autonomous out-of-equilibrium agents or cells in suspension are ubiquitous in biology and engineering. Turning chemical energy into mechanical stress, they generate activity in their environment, which may trigger spontaneous large-scale dynamics. Often, these systems are composed of multiple populations that may reflect the coexistence of multiple species, differing phenotypes, or chemically varying agents in engineered settings. Here, we present a new method for modeling such multi-population active fluids subject to confinement. We use a continuum multi-scale mean-field approach to represent each phase by its first three orientational moments and couple their evolution with those of the suspending fluid. The resulting coupled system is solved using a parallel adaptive level-set-based solver for high computational efficiency and maximal flexibility in the confinement geometry. Motivated by recent experimental work, we employ our method to study the spatiotemporal dynamics of confined bacterial suspensions and swarms dominated by fluid hydrodynamic effects. Our in silico explorations reproduce observed emergent collective patterns, including features of active dissolution in two-population active-passive swarms, with results clearly suggesting that hydrodynamic effects dominate dissolution dynamics. Our work lays the foundation for a systematic characterization and study of collective phenomena in natural or synthetic multi-population systems such as bacteria colonies, bird flocks, fish schools, colloid swimmers, or programmable active matter.
Collapse
Affiliation(s)
- Cayce Fylling
- Department of Applied Mathematics, University of California Merced, Merced, CA95343, USA.
| | - Joshua Tamayo
- Department of Bioengineering, University of California Merced, Merced, CA 95343, USA.
| | - Arvind Gopinath
- Department of Bioengineering, University of California Merced, Merced, CA 95343, USA.
| | - Maxime Theillard
- Department of Applied Mathematics, University of California Merced, Merced, CA95343, USA.
| |
Collapse
|
2
|
Schimming CD, Viñals J. Equilibrium morphology of tactoids in elastically anisotropic nematics. SOFT MATTER 2022; 18:8024-8033. [PMID: 36226483 DOI: 10.1039/d2sm00323f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We study two dimensional tactoids in nematic liquid crystals by using a Q-tensor representation. A bulk free energy of the Maier-Saupe form with eigenvalue constraints on Q, plus elastic terms up to cubic order in Q are used to understand the effects of anisotropic anchoring and Frank-Oseen elasticity on the morphology of nematic-isotropic domains. Further, a volume constraint is introduced to stabilize tactoids of any size at coexistence. We find that anisotropic anchoring results in differences in interface thickness depending on the relative orientation of the director at the interface, and that interfaces become biaxial for tangential alignment when anisotropy is introduced. For negative tactoids, surface defects induced by boundary topology become sharper with increasing elastic anisotropy. On the other hand, by parametrically studying their energy landscape, we find that surface defects do not represent the minimum energy configuration in positive tactoids. Instead, the interplay between Frank-Oseen elasticity in the bulk, and anisotropic anchoring yields semi-bipolar director configurations with non-circular interface morphology. Finally, we find that for growing tactoids the evolution of the director configuration is highly sensitive to the anisotropic term included in the free energy, and that minimum energy configurations may not be representative of kinetically obtained tactoids at long times.
Collapse
Affiliation(s)
- Cody D Schimming
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55414, USA.
| | - Jorge Viñals
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55414, USA.
| |
Collapse
|
3
|
Coelho RCV, Araújo NAM, Telo da Gama MM. Dispersion of activity at an active-passive nematic interface. SOFT MATTER 2022; 18:7642-7653. [PMID: 36169262 DOI: 10.1039/d2sm00988a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Efficient nutrient mixing is crucial for the survival of bacterial colonies and other living systems known as active nematics. However, the dynamics of this mixing is non-trivial as there is a coupling between nutrients concentration and velocity field. To address this question, we solve the hydrodynamic equation for active nematics to model the bacterial swarms coupled to an advection-diffusion equation for the activity field, which is proportional to the concentration of nutrients. At the interface between active and passive nematics the activity field is transported by the interfacial flows and in turn it modifies them through the generation of active stresses. We find that the dispersion of this conserved activity field is subdiffusive due to the emergence of a barrier of negative defects at the active-passive interface, which hinders the propagation of the motile positive defects.
Collapse
Affiliation(s)
- Rodrigo C V Coelho
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal.
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal
| | - Nuno A M Araújo
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal.
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal
| | - Margarida M Telo da Gama
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal.
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal
| |
Collapse
|
4
|
Rebocho TC, Tasinkevych M, Dias CS. Effect of anisotropy on the formation of active particle films. Phys Rev E 2022; 106:024609. [PMID: 36109963 DOI: 10.1103/physreve.106.024609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Active colloids belong to a class of nonequilibrium systems where energy uptake, conversion, and dissipation occur at the level of individual colloidal particles, which can lead to particles' self-propelled motion and surprising collective behavior. Examples include coexistence of vapor- and liquid-like steady states for active particles with repulsive interactions only, phenomena known as motility-induced phase transitions. Similarly to motile unicellular organisms, active colloids tend to accumulate at confining surfaces forming dense adsorbed films. In this work, we study the structure and dynamics of aggregates of self-propelled particles near confining solid surfaces, focusing on the effects of the particle anisotropic interactions. We performed Langevin dynamics simulations of two complementary models for active particles: ellipsoidal particles interacting through the Gay-Berne potential and rodlike particles composed of several repulsive Lennard-Jones beads. We observe a nonmonotonic behavior of the structure of clusters formed along the confining surface as a function of the particle aspect ratio, with a film spreading when particles are near-spherical, compact clusters with hedgehog-like particle orientation for more elongated active particles, and a complex dynamical behavior for an intermediate aspect ratio. The stabilization time of cluster formation along the confining surface also displays a nonmonotonic dependence on the aspect ratio, with a local minimum at intermediate values. Additionally, we demonstrate that the hedgehog-like aggregates formed by Gay-Berne ellipsoids exhibit higher structural stability as compared to the ones formed by purely repulsive active rods, which are stable due to the particle activity only.
Collapse
Affiliation(s)
- T C Rebocho
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - M Tasinkevych
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- SOFT Group, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - C S Dias
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| |
Collapse
|
5
|
Coelho RCV, Araújo NAM, Telo da Gama MM. Director alignment at the nematic-isotropic interface: elastic anisotropy and active anchoring. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200394. [PMID: 34455836 DOI: 10.1098/rsta.2020.0394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 06/13/2023]
Abstract
Activity in nematics drives interfacial flows that lead to preferential alignment that is tangential or planar for extensile systems (pushers) and perpendicular or homeotropic for contractile ones (pullers). This alignment is known as active anchoring and has been reported for a number of systems and described using active nematic hydrodynamic theories. The latter are based on the one-elastic constant approximation, i.e. they assume elastic isotropy of the underlying passive nematic. Real nematics, however, have different elastic constants, which lead to interfacial anchoring. In this paper, we consider elastic anisotropy in multiphase and multicomponent hydrodynamic models of active nematics and investigate the competition between the interfacial alignment driven by the elastic anisotropy of the passive nematic and the active anchoring. We start by considering systems with translational invariance to analyse the alignment at flat interfaces and, then, consider two-dimensional systems and active nematic droplets. We investigate the competition of the two types of anchoring over a wide range of the other parameters that characterize the system. The results of the simulations reveal that the active anchoring dominates except at very low activities, when the interfaces are static. In addition, we found that the elastic anisotropy does not affect the dynamics but changes the active length that becomes anisotropic. This article is part of the theme issue 'Progress in mesoscale methods for fluid dynamics simulation'.
Collapse
Affiliation(s)
- Rodrigo C V Coelho
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Nuno A M Araújo
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Margarida M Telo da Gama
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
6
|
Schimming CD, Viñals J. Anisotropic disclination cores in nematic liquid crystals modeled by a self-consistent molecular field theory. Phys Rev E 2020; 102:010701. [PMID: 32794929 DOI: 10.1103/physreve.102.010701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/13/2020] [Indexed: 11/07/2022]
Abstract
Disclination configurations of a nematic liquid crystal are studied within a self-consistent molecular field theory. The theory is based on a tensor order parameter, and can accommodate anisotropic elastic energies without the known divergences in the Landau-de Gennes formulation. Our results agree with the asymptotic results of Dzyaloshinskii for the Frank-Oseen energy far from the defect core, but reveal biaxial order at intermediate distances from the core, crossing over to uniaxial but axisymmetric configurations as the core is approached. The elastic terms considered in our energy allow for the separate control of surface tension, anchoring, and elasticity contrast, and are used to analyze recent results for lyotropic chromonic liquid crystals. The latter display unusually large defect cores (on the order of tens of microns) which can be used for a quantitative comparison with the theory. Both ±1/2 disclination configurations are well reproduced by our calculations. Elastic anisotropy is also shown to lead to qualitative changes in the disclination polarization, a quantity that is proportional to the active stress in models of active matter.
Collapse
Affiliation(s)
- Cody D Schimming
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Jorge Viñals
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|