1
|
An Y, Lee Y, Ji Y, Kim YD, Seo HO, Jung DY. CO 2 reduction efficiency through electrolyte immersion in hierarchical bismuth-nickel catalysts. Dalton Trans 2024. [PMID: 39465679 DOI: 10.1039/d4dt02441a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Nanostructures are critical for improving the contact area with an electrolyte and catalytic efficiency for the CO2 reduction reaction (CO2RR). However, their hydrophobicity conflicts with the intended increase in the contact area and complicates the determination of the active contact area. Here, bismuth-nickel (BiNi) micro-nano hierarchical catalysts for the CO2RR were studied to understand the effects of electrolyte-catalyst contact area variation with the immersion duration in an aqueous electrolyte. The immersed BiNi samples showed about 13.4-fold higher formate production compared to the pristine BiNi sample. The 2-day pre-immersed BiNi sample exhibited faradaic efficiencies (FE%) of ∼80.1% for formate and ∼10% for H2 with a current density of 10.2 mA cm-2 at -1.5 V vs. Ag/AgCl. In contrast, the pristine BiNi catalysts exhibited an FE% of ∼12.9% for formate and ∼76.3% for H2 with a current density of 5.38 mA cm-2. Our experimental results reveal that the improved contact between the electrolyte and the catalyst surface through pre-immersion can lead to enhanced CO2RR efficiency for formate production using hierarchical BiNi catalysts.
Collapse
Affiliation(s)
- Yongsu An
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Yongju Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Yujing Ji
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Young Dok Kim
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Hyun Ook Seo
- Department of Chemistry and Engineering, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Duk-Young Jung
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
2
|
Wen K, Chen X, Cheng S, Wang X, Ma H, Song Q, Zhao Q, Tian H, Zhang J, Shao J. Modulation of wetting state switching of droplets on superhydrophobic microstructured surfaces by external electric field. J Colloid Interface Sci 2024; 672:533-542. [PMID: 38852354 DOI: 10.1016/j.jcis.2024.05.226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
HYPOTHESIS Electrowetting on conventional dielectrics requires direct fluid-electrode contact to generate strong electric fields at the three-phase contact line to modulate the wetting. Since the electric field alters wetting, the modulation of wetting can be achieved by applying an external electric field through insulated electrodes, preventing the liquid from contacting the electrodes. EXPERIMENT A simple and efficient method for non-contact between the fluid and the electrode external electric field modulation of fluid wetting was proposed. The switching ability of droplets on microgroove surfaces from Cassie-Baxter to Wenzel wetting state under an external electric field was used to drive and quantify the relationship between wetting, contact angle, and the applied voltage. FINDINGS Applying an external electric field modulates the wetting of deionized water, ionic liquids, and high-viscosity liquids on microgrooves. The wetting degree of liquid can be controlled by adjusting the external voltage parameters. The finite element simulations revealed that the Maxwell force drove this process. The effects of substrate size and liquid properties on wetting behavior were also examined. Post-application cross-sectional imaging showed the formation of a conformal interface, highlighting the relevance of the proposed method in advanced adaptive shape fabrication and microfluidic control, among other applications.
Collapse
Affiliation(s)
- Kaiqiang Wen
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaoming Chen
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; XJTU-POLIMI Joint School of Design and Innovation, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Siyi Cheng
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xin Wang
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hechuan Ma
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Qihang Song
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Quanyi Zhao
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hongmiao Tian
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jie Zhang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jinyou Shao
- Micro- and Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
3
|
Keshavarzi S, Momen G, Eberle P, Azimi Yancheshme A, Alvarez NJ, Jafari R. Exploiting intermediate wetting on superhydrophobic surfaces for efficient icing prevention. J Colloid Interface Sci 2024; 670:550-562. [PMID: 38776690 DOI: 10.1016/j.jcis.2024.05.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
HYPOTHESIS Superhydrophobic surfaces can effectively prevent the freezing of supercooled droplets in technological systems. Droplets on superhydrophobic surfaces commonly not only wet the top asperities (Cassie State), but also partially penetrate into microstructure due to surface properties, environment, and droplet impact occurring in real-world applications. Implications on ice nucleation can be expected and are little explored. It remains elusive how anti-icing surfaces can be designed to exploit intermediate wetting phenomena. EXPERIMENTS We utilized engineered micro-/nanostructures, specifically micropillars, to modulate the wetting fraction in the microstructure. The behavior of intermediate wetting with supercooling and resulting implications on ice nucleation delay when potential nucleation sites are formed in the microcavities were investigated using experimental, theoretical, and simulation components. FINDINGS The temperature-dependent wetting fraction in the microstructure increased at supercooled temperatures, partly activated by condensation in the microcavities. At -10/-20 °C, a critical wetting fraction led to maximum ice nucleation delays, with experimental results consistent with theoretical predictions. This critical wetting fraction minimized the effective contact area solid-to-liquid along the partially wetted microstructure. The study establishes physical relations between ice nucleation delays, geometrical surface parameters and wettability properties in the intermediate wetting regime, providing guidance for the design of ice resistant microstructured surfaces.
Collapse
Affiliation(s)
- Samaneh Keshavarzi
- Department of Applied Sciences, University of Québec in Chicoutimi, Chicoutimi, Québec, Canada
| | - Gelareh Momen
- Department of Applied Sciences, University of Québec in Chicoutimi, Chicoutimi, Québec, Canada.
| | - Patric Eberle
- Institute of Electrical Engineering, Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
| | - Amir Azimi Yancheshme
- Chemical and Biological Engineering Department, Drexel University, Philadelphia, USA
| | - Nicolas J Alvarez
- Chemical and Biological Engineering Department, Drexel University, Philadelphia, USA
| | - Reza Jafari
- Department of Applied Sciences, University of Québec in Chicoutimi, Chicoutimi, Québec, Canada
| |
Collapse
|
4
|
Liu H, Zhang Z, Wu C, Su K, Kan X. Biomimetic Superhydrophobic Materials through 3D Printing: Progress and Challenges. MICROMACHINES 2023; 14:1216. [PMID: 37374801 DOI: 10.3390/mi14061216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Superhydrophobicity, a unique natural phenomenon observed in organisms such as lotus leaves and desert beetles, has inspired extensive research on biomimetic materials. Two main superhydrophobic effects have been identified: the "lotus leaf effect" and the "rose petal effect", both showing water contact angles larger than 150°, but with differing contact angle hysteresis values. In recent years, numerous strategies have been developed to fabricate superhydrophobic materials, among which 3D printing has garnered significant attention due to its rapid, low-cost, and precise construction of complex materials in a facile way. In this minireview, we provide a comprehensive overview of biomimetic superhydrophobic materials fabricated through 3D printing, focusing on wetting regimes, fabrication techniques, including printing of diverse micro/nanostructures, post-modification, and bulk material printing, and applications ranging from liquid manipulation and oil/water separation to drag reduction. Additionally, we discuss the challenges and future research directions in this burgeoning field.
Collapse
Affiliation(s)
- Haishuo Liu
- School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
| | - Zipeng Zhang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Kang Su
- School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
| | - Xiaonan Kan
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
5
|
Tarannum T, Ahmed S. Recent development in antiviral surfaces: Impact of topography and environmental conditions. Heliyon 2023; 9:e16698. [PMID: 37260884 PMCID: PMC10227326 DOI: 10.1016/j.heliyon.2023.e16698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
The transmission of viruses is largely dependent on contact with contaminated virus-laden communal surfaces. While frequent surface disinfection and antiviral coating techniques are put forth by researchers as a plan of action to tackle transmission in dire situations like the Covid-19 pandemic caused by SARS-CoV-2 virus, these procedures are often laborious, time-consuming, cost-intensive, and toxic. Hence, surface topography-mediated antiviral surfaces have been gaining more attention in recent times. Although bioinspired hydrophobic antibacterial nanopatterned surfaces mimicking the natural sources is a very prevalent and successful strategy, the antiviral prospect of these surfaces is yet to be explored. Few recent studies have explored the potential of nanopatterned antiviral surfaces. In this review, we highlighted surface properties that have an impact on virus attachment and persistence, particularly focusing and emphasizing on the prospect of the nanotextured surface with enhanced properties to be used as antiviral surface. In addition, recent developments in surface nanopatterning techniques depending on the nano-scaled dimensions have been discussed. The impacts of environments and surface topology on virus inactivation have also been reviewed.
Collapse
Affiliation(s)
- Tanjina Tarannum
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000. Bangladesh
| | - Shoeb Ahmed
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000. Bangladesh
| |
Collapse
|
6
|
Wang F, Wu Y, Nestler B. Wetting Effect on Patterned Substrates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2210745. [PMID: 36779433 DOI: 10.1002/adma.202210745] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/01/2023] [Indexed: 05/10/2023]
Abstract
A droplet deposited on a solid substrate leads to the wetting phenomenon. A natural observation is the lotus effect, known for its superhydrophobicity. This special feature is engendered by the structured microstructure of the lotus leaf, namely, surface heterogeneity, as explained by the quintessential Cassie-Wenzel theory (CWT). In this work, recent designs of functional substrates are overviewed based on the CWT via manipulating the contact area between the liquid and the solid substrate as well as the intrinsic Young's contact angle. Moreover, the limitation of the CWT is discussed. When the droplet size is comparable to the surface heterogeneity, anisotropic wetting morphology often appears, which is beyond the scope of the Cassie-Wenzel work. In this case, several recent studies addressing the anisotropic wetting effect on chemically and mechanically patterned substrates are elucidated. Surface designs for anisotropic wetting morphologies are summarized with respect to the shape and the arrangement of the surface heterogeneity, the droplet volume, the deposition position of the droplet, as well as the mean curvature of the surface heterogeneity. A thermodynamic interpretation for the wetting effect and the corresponding open questions are presented at the end.
Collapse
Affiliation(s)
- Fei Wang
- Institute for Applied Materials - Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131, Karlsruhe, Germany
| | - Yanchen Wu
- Institute for Applied Materials - Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131, Karlsruhe, Germany
| | - Britta Nestler
- Institute for Applied Materials - Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131, Karlsruhe, Germany
- Institute of Digital Materials Science, Karlsruhe University of Applied Sciences, Moltkestrasse 30, 76133, Karlsruhe, Germany
| |
Collapse
|
7
|
Yu Y, Zhang D, Nagayama G. Estimation of surface free energy at microstructured surface to investigate intermediate wetting state for partial wetting model. SOFT MATTER 2023; 19:1249-1257. [PMID: 36722932 DOI: 10.1039/d2sm01406h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
While partial wetting at nano-/microstructured surfaces can be described using the intermediate wetting state between the Cassie-Baxter and Wenzel states, the limitations of the partial wetting model remain unclear. In this study, we performed surface free energy analysis at a microstructured Si-water interface from both theoretical and experimental viewpoints. We experimentally measured the water contact angle on microstructured Si surfaces with square holes and compared the measured values with theoretical predictions. Furthermore, the surface free energy was analyzed using the effective wetting area estimated from the measured contact angle and electrochemical impedance spectroscopy results. We verified the validity of the partial wetting model for fabricated Si surfaces with a hole aperture a less than 230 μm and a hole height h of 12 μm, and for a < 400 μm, h = 40 μm. The model was found to be applicable to microstructured Si surfaces with a/h < 10.
Collapse
Affiliation(s)
- Yankun Yu
- Graduate School of Engineering, Kyushu Institute of Technology, Sensui 1-1, Tobata, Kitakyushu, Fukuoka 804-8550, Japan
| | - Dejian Zhang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Daxue Road 3501, Changqing, Jinan, Shandong 250316, China
| | - Gyoko Nagayama
- Department of Mechanical Engineering, Kyushu Institute of Technology, Sensui 1-1, Tobata, Kitakyushu, Fukuoka 804-8550, Japan.
| |
Collapse
|
8
|
Rehman MMU, Nagayama G. Contribution of solid–liquid–vapor interface to droplet evaporation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Gaxiola-López JC, Lara-Ceniceros TE, Silva-Vidaurri LG, Advincula RC, Bonilla-Cruz J. 3D Printed Parahydrophobic Surfaces as Multireaction Platforms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7740-7749. [PMID: 35687828 DOI: 10.1021/acs.langmuir.2c00788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Parahydrophobic surfaces (PHSs) composed of arrays of cubic μ-pillars with a double scale of roughness and variable wettability were systematically obtained in one step and a widely accessible stereolithographic Formlabs 3D printer. The wettability control was achieved by combining the geometrical parameters (H = height and P = pitch) and the surface modification with fluoroalkyl silane compounds. Homogeneous distribution of F and Si atoms onto the pillars was observed by XPS and SEM-EDAX. A nano-roughness on the heads of the pillars was achieved without any post-treatment. The smallest P values lead to surfaces with static contact angles (CAs) >150° regardless of the H utilized. Interestingly, the relationship 0.6 ≤ H/P ≤ 2.6 obtained here was in good agreement with the H/P values reported for nano- and submicron pillars. Furthermore, experimental CAs, advancing and receding CAs, were consistent with the theoretical prediction from the Cassie-Baxter model. Structures covered with perfluorodecyltriethoxysilane with high H and short P lead to PHSs. Conversely, structures covered with perfluorodecyltrimethoxysilane exhibited a superhydrophobic behavior. Finally, several aqueous reactions, such as precipitation, coordination complex, and nanoparticle synthesis, were carried out by placing the reactive agents as microdroplets on the parahydrophobic pillars, demonstrating the potential application as chemical multi-reaction array platforms for a large variety of relevant fields in microdroplet manipulation, microfluidics systems, and health monitoring, among others.
Collapse
Affiliation(s)
- Julio C Gaxiola-López
- Advanced Functional Materials & Nanotechnology Group, Av. Alianza Norte 202, Autopista Monterrey-Aeropuerto Km 10, PIIT, C.P. 66628 Apodaca, Nuevo León, Mexico
- Nano & Micro Additive Manufacturing of Polymers and Composite Materials Laboratory "3D LAB", Av. Alianza Norte 202, Autopista Monterrey-Aeropuerto Km 10, PIIT, C.P. 66628 Apodaca, Nuevo León, Mexico
- Centro de Investigación en Materiales Avanzados S. C. (CIMAV-Subsede Monterrey), Av. Alianza Norte 202, Autopista Monterrey-Aeropuerto Km 10, PIIT, C.P. 66628 Apodaca, Nuevo León, Mexico
| | - Tania E Lara-Ceniceros
- Advanced Functional Materials & Nanotechnology Group, Av. Alianza Norte 202, Autopista Monterrey-Aeropuerto Km 10, PIIT, C.P. 66628 Apodaca, Nuevo León, Mexico
- Nano & Micro Additive Manufacturing of Polymers and Composite Materials Laboratory "3D LAB", Av. Alianza Norte 202, Autopista Monterrey-Aeropuerto Km 10, PIIT, C.P. 66628 Apodaca, Nuevo León, Mexico
- Centro de Investigación en Materiales Avanzados S. C. (CIMAV-Subsede Monterrey), Av. Alianza Norte 202, Autopista Monterrey-Aeropuerto Km 10, PIIT, C.P. 66628 Apodaca, Nuevo León, Mexico
| | - Luis Gerardo Silva-Vidaurri
- Centro de Investigación en Materiales Avanzados S. C. (CIMAV-Subsede Monterrey), Av. Alianza Norte 202, Autopista Monterrey-Aeropuerto Km 10, PIIT, C.P. 66628 Apodaca, Nuevo León, Mexico
| | - Rigoberto C Advincula
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 44106 Cleveland, Ohio, United States
- University of Tennessee, 37996 Knoxville, Tennessee, United States
- Oak Ridge National Laboratory, 37830 Oak Ridge, Tennessee, United States
| | - José Bonilla-Cruz
- Advanced Functional Materials & Nanotechnology Group, Av. Alianza Norte 202, Autopista Monterrey-Aeropuerto Km 10, PIIT, C.P. 66628 Apodaca, Nuevo León, Mexico
- Nano & Micro Additive Manufacturing of Polymers and Composite Materials Laboratory "3D LAB", Av. Alianza Norte 202, Autopista Monterrey-Aeropuerto Km 10, PIIT, C.P. 66628 Apodaca, Nuevo León, Mexico
- Centro de Investigación en Materiales Avanzados S. C. (CIMAV-Subsede Monterrey), Av. Alianza Norte 202, Autopista Monterrey-Aeropuerto Km 10, PIIT, C.P. 66628 Apodaca, Nuevo León, Mexico
| |
Collapse
|
10
|
Ibáñez-Ibáñez P, Montes Ruiz-Cabello FJ, Cabrerizo-Vílchez MA, Rodríguez-Valverde MA. Mechanical Durability of Low Ice Adhesion Polydimethylsiloxane Surfaces. ACS OMEGA 2022; 7:20741-20749. [PMID: 35755365 PMCID: PMC9219074 DOI: 10.1021/acsomega.2c01134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Elastomeric surfaces and oil-infused elastic surfaces reveal low ice adhesion, in part because of their deformability. However, these soft surfaces might jeopardize their mechanical durability. In this work, we analyzed the mechanical durability of elastic polydimethylsiloxane (PDMS) surfaces with different balances between elasticity and deicing performances. The durability was studied in terms of shear/tensile ice adhesion strength before and after different wear tests. These tests consisted of abrasion/erosion cycles using standard procedures aimed to reproduce different environmental wearing agents. The main objective is to evaluate if our PDMS surfaces can become long-lasting solutions for ice removal in real conditions. We found that our elastic surfaces show excellent durability. After the wear tests, the ice adhesion strength values remained low or even unaltered. Although the oil-infused PDMS surface was the softest one, it presented considerable durability and excellent low ice adhesion, being a promising solution.
Collapse
|
11
|
Lee E, Müller-Plathe F. Contact Line Friction and Dynamic Contact Angles of a Capillary Bridge between Superhydrophobic Nanostructured Surfaces. J Chem Phys 2022; 157:024701. [DOI: 10.1063/5.0098150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The Cassie-Baxter state of wetting explains a large equilibrium contact angle and the slippery dynamics of a water droplet on a superhydrophobic rough surface. It also causes a contact angle hysteresis (CAH) which cannot be fully described by dynamic wetting theories including the molecular kinetic theory (MKT). We analyze the contact line dynamics on a superhydrophobic surface in the framework of the MKT. Multi-body dissipative particle dynamics simulations of a capillary bridge confined between two rough surfaces under steady shear are performed. We find that, in addition to the contact line friction force from the MKT, an additional friction force contribution is needed on rough surface, which is almost constant at all contact line velocities. Thus, it is directly related to the CAH. The CAH originates not only from contact line pinning but also from the shear flow due to the strong friction in the central region of the liquid-solid interface away from the contact line. The analysis of the particle flow inside the capillary bridge shows that liquid particles trapped in the grooves of the surface texture actually move with the same velocity as the surface, and exert strong additional friction to other liquid particles. This work extends the MKT to rough surfaces, as well as to elucidate the origin of the CAH of a capillary bridge. The finding would help to better understand also other situations of dynamic wetting on superhydrophobic surfaces.
Collapse
Affiliation(s)
- Eunsang Lee
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technical University of Darmstadt, Germany
| | | |
Collapse
|
12
|
Huang SY, Hsieh PY, Chung CJ, Chou CM, He JL. Nanoarchitectonics for Ultrathin Gold Films Deposited on Collagen Fabric by High-Power Impulse Magnetron Sputtering. NANOMATERIALS 2022; 12:nano12101627. [PMID: 35630849 PMCID: PMC9143808 DOI: 10.3390/nano12101627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/07/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022]
Abstract
Gold nanoparticles conjugated with collagen molecules and fibers have been proven to improve structure strength, water and enzyme degradation resistance, cell attachment, cell proliferation, and skin wound healing. In this study, high-power impulse magnetron sputtering (HiPIMS) was used to deposit ultrathin gold films (UTGF) and discontinuous island structures on type I collagen substrates. A long turn-off time of duty cycle and low chamber temperature of HiPIMS maintained substrate morphology. Increasing the deposition time from 6 s to 30 s elevated the substrate surface coverage by UTGF up to 91.79%, as observed by a field emission scanning electron microscope. X-ray diffractometry analysis revealed signature low and wide peaks for Au (111). The important surface functional groups and signature peaks of collagen substrate remained unchanged according to Fourier transform infrared spectroscopy results. Multi-peak curve fitting of the Amide I spectrum revealed the non-changed protein secondary structure of type I collagen, which mainly consists of α-helix. Atomic force microscopy observation showed that the roughness average value shifted from 1.74 to 4.17 nm by increasing the deposition time from 13 s to 77 s. The uneven surface of collagen substrate made quantification of thin film thickness by AFM difficult. Instead, UTGF thickness was measured using simultaneously deposited glass specimens placed in an HiPIMS chamber with collagen substrates. Film thickness was 3.99 and 10.37 nm at deposition times of 13 and 77 s, respectively. X-ray photoelectron spectroscopy showed preserved substrate elements on the surface. Surface water contact angle measurement revealed the same temporary hydrophobic behavior before water absorption via exposed collagen substrates, regardless of deposition time. In conclusion, HiPIMS is an effective method to deposit UTGF on biomedical materials such as collagen without damaging valuable substrates. The composition of two materials could be further used for biomedical purposes with preserved functions of UTGF and collagen.
Collapse
Affiliation(s)
- Sheng-Yang Huang
- Department of Materials Science and Engineering, Feng Chia University, 100, Wenhwa Rd., Seatwen District, Taichung 40724, Taiwan; (S.-Y.H.); (P.-Y.H.)
- Department of Surgery, Taichung Veterans General Hospital, 1650, Sec. 4, Taiwan Boulevard, Seatwen District, Taichung 40705, Taiwan
- Department of Medicine, National Yang-Ming University, 155, Sec.2, Linong Street, Beitou District, Taipei 11221, Taiwan
| | - Ping-Yen Hsieh
- Department of Materials Science and Engineering, Feng Chia University, 100, Wenhwa Rd., Seatwen District, Taichung 40724, Taiwan; (S.-Y.H.); (P.-Y.H.)
| | - Chi-Jen Chung
- Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, 666, Buzih Rd., Beitun District, Taichung 40601, Taiwan;
| | - Chia-Man Chou
- Department of Surgery, Taichung Veterans General Hospital, 1650, Sec. 4, Taiwan Boulevard, Seatwen District, Taichung 40705, Taiwan
- Department of Medicine, National Yang-Ming University, 155, Sec.2, Linong Street, Beitou District, Taipei 11221, Taiwan
- Correspondence: ; Tel.: +886-4-23592525 (ext. 5182)
| | - Ju-Liang He
- Institute of Plasma, Feng Chia University, 100, Wenhwa Rd., Seatwen District, Taichung 40724, Taiwan;
| |
Collapse
|
13
|
Al Balushi KM, Sefiane K, Orejon D. Binary mixture droplet wetting on micro-structure decorated surfaces. J Colloid Interface Sci 2022; 612:792-805. [PMID: 35065463 DOI: 10.1016/j.jcis.2021.12.171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/17/2021] [Accepted: 12/26/2021] [Indexed: 10/19/2022]
Abstract
Liquid surface tension as well as solid structure play a paramount role on the intimate wetting and non-wetting regimes and interactions between liquids droplets and solid substrates. We hypothesise that the coupling of these two variables, independently addressed in the past, eventually offer a wider range of understanding to the surface science and interfacial communities. In this work, intrinsically hydrophobic micro-pillared surfaces varying in the spacing between structures, and pure ethanol, pure water and their binary mixtures (as well as acetone-water and ethylene glycol-water mixtures) are utilised, accessing a wide range of substrate solid fractions and liquid surface tensions experimentally. Wettability measurements are carried out at different azimuthal directions to exemplify the wetting/non-wetting behaviour as well as the droplet asymmetry function of both liquid composition and structure spacing. Our findings reveal that high water concentration droplets, i.e., high surface tension fluids, sit in the Cassie-Baxter regime while partial non-wetting Wenzel or mixed-mode regimes with enhanced droplet asymmetry ensuing for medium and high ethanol concentrations, i.e., low surface tension fluids, below certain micropillar spacing. Beyond micropillar spacing s ≥ 40 µm, the impact of the surface structure on the droplet shape is negligible, and droplets adopt a similar contact angle and circular shape as on a flat smooth hydrophobic surface. Wetting and non-wetting regimes are then supported by classical wetting theories and equations. A wetting regime map for a wide range of surface tension fluids and/or their mixtures on a wide domain of solid fractions is then proposed.
Collapse
Affiliation(s)
- Khaloud Moosa Al Balushi
- Institute for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FD, Scotland, UK; Department of Engineering, The University of Technology and Applied Sciences, Suhar 311, Oman
| | - Khellil Sefiane
- Institute for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FD, Scotland, UK
| | - Daniel Orejon
- Institute for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FD, Scotland, UK; International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
14
|
Mandal P, Ivvala J, Arora HS, Ghosh SK, Grewal HS. Bioinspired micro/nano structured aluminum with multifaceted applications. Colloids Surf B Biointerfaces 2022; 211:112311. [PMID: 34979496 DOI: 10.1016/j.colsurfb.2021.112311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/26/2021] [Accepted: 12/26/2021] [Indexed: 10/19/2022]
Abstract
Inspired by many biological systems such as lotus leaves, insect wings and rose petals, great attention has been devoted to the study and fabrication of artificial superhydrophobic surfaces with multiple functionalities. In the present study, a simple and ecological synthesis route has been employed for large scale fabrication of self-assembled, sustainable nanostructures on unprocessed and micro imprinted aluminum surfaces named 'Nano' and 'Hierarchy'. The processed samples show extreme wettability ranging from superhydrophilicity to superhydrophobicity depending on post-processing conditions. The densely packed ellipsoidal nanostructures exhibited superhydrophobicity with excellent water, bacterial and dust repellency when modified by low surface energy material 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FOTES), characterized by a static contact angle of 163 ± 1° and contact angle hysteresis (CAH) ~3°. These coated surfaces show significant corrosion resistance with current density of 6 nA/cm2 which is 40 times lower than unprocessed counterpart and retain chemical stability after prolonged immersion in corrosive media. These surfaces show excellent self-cleaning ability with significantly low water consumption (< 0.1 µl/mm2-mg) and prevent biofouling which ensures its applicability in biological environment and marine components. The nanostructured superhydrophilic aluminum shows maximum antibacterial activity due to disruption of cell membrane. This work can offer a simple strategy to large scale fabrication of multifunctional biomimetic metallic surfaces.
Collapse
Affiliation(s)
- Priya Mandal
- Department of Physics, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Jayanth Ivvala
- Surface Science and Tribology Lab, Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Harpreet S Arora
- Surface Science and Tribology Lab, Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Harpreet S Grewal
- Surface Science and Tribology Lab, Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India.
| |
Collapse
|
15
|
Mok JH, Niu Y, Yousef A, Zhao Y, Sastry SK. A microfluidic approach for studying microcolonization of Escherichia coli O157:H7 on leaf trichome-mimicking surfaces under fluid shear stress. Biotechnol Bioeng 2022; 119:1556-1566. [PMID: 35141878 DOI: 10.1002/bit.28057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/17/2022] [Accepted: 01/30/2022] [Indexed: 11/11/2022]
Abstract
Escherichia coli O157:H7 have previously been associated with disease outbreaks associated with leafy green vegetables. However, the physical mechanisms that determine the spatial organization of bacteria onto leafy greens are still not clear. Microfluidics with embedded trichome-mimicking microposts were employed to investigate the role of shear flow and configuration of trichomes on E. coli O157:H7 microcolonization. We characterized the three-dimensional microcolonization of green fluorescent protein (GFP)-tagged E. coli O157:H7 using multiphoton fluorescence microscopy and compared their differences under static (no flow; incubated for 36 h at 37°C) and fluid shear conditions (750 nl/min for 36 h at 37°C). For micropatterned trichome arrays, we demonstrated that natural wax-mixed polydimethylsiloxane retains similar topographies and contact angles to the surface of trichome-bearing leafy greens. Our results showed that E. coli O157:H7 under fluid shear stress aligned their colonization parallel to the direction of flow. In a static condition, their colonization had no preferential alignment, with statistically similar angular distributions in all directions. In addition, depending on dimensions of the trichome arrays and flow conditions, different bacterial microcolonization patterns grew radially from initial attachment; they formed into filamentous structures and developed into bridges by surface hydrophobicity and flow-induced shear with a nutrient-rich medium. Collectively, these results demonstrate how the consequences of bacterial colonization in response to shear flow can affect pathogenic bacterial contamination of leafy greens and biofilm architectures.
Collapse
Affiliation(s)
- Jin Hong Mok
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Ye Niu
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Ahmed Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| | - Yi Zhao
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Sudhir K Sastry
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
16
|
Belén F, Gravina AN, Pistonesi MF, Ruso JM, García NA, Prado FD, Messina PV. NIR-Reflective and Hydrophobic Bio-Inspired Nano-Holed Configurations on Titanium Alloy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5843-5855. [PMID: 35048694 DOI: 10.1021/acsami.1c22557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Near-infrared (NIR) radiation plays an important role in guided external stimulus therapies; its application in bone-related treatments is becoming more and more frequent. Therefore, metallic biomaterials that exhibit properties activated by NIR are promising for further orthopedic procedures. In this work, we present an adapted electroforming approach to attain a biomorphic nano-holed TiO2 coating on Ti6Al4V alloy. Through a precise control of the anodization conditions, structures revealed the formation of localized nano-pores arranged in a periodic assembly. This specific organization provoked higher stability against thermal oxidation and precise hydrophobic wettability behavior according to Cassie-Baxter's model; both characteristics are a prerequisite to ensure a favorable biological response in an implantable structure for guided bone regeneration. In addition, the periodically arranged sub-wavelength-sized unit cell on the metallic-dielectric structure exhibits a peculiar optical response, which results in higher NIR reflectivity. Accordingly, we have proved that this effect enhances the efficiency of the scattering processes and provokes a significant improvement of light confinement producing a spontaneous NIR fluorescence emission. The combination of the already favorable mechanical and biocompatibility properties of Ti6Al4V, along with suitable thermal stability, wetting, and electro-optical behavior, opens a promising path toward strategic bone therapeutic procedures.
Collapse
Affiliation(s)
- Federico Belén
- INQUISUR─CONICET, Department of Chemistry, Universidad Nacional del Sur, CPB B8000 Bahía Blanca, Argentina
| | - A Noel Gravina
- INQUISUR─CONICET, Department of Chemistry, Universidad Nacional del Sur, CPB B8000 Bahía Blanca, Argentina
| | - Marcelo Fabián Pistonesi
- INQUISUR─CONICET, Department of Chemistry, Universidad Nacional del Sur, CPB B8000 Bahía Blanca, Argentina
| | - Juan M Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Nicolás A García
- IFISUR─CONICET, Department of Physics, Universidad Nacional del Sur, CPB B8000 Bahía Blanca, Argentina
| | - Fernando Daniel Prado
- IFISUR─CONICET, Department of Physics, Universidad Nacional del Sur, CPB B8000 Bahía Blanca, Argentina
| | - Paula V Messina
- INQUISUR─CONICET, Department of Chemistry, Universidad Nacional del Sur, CPB B8000 Bahía Blanca, Argentina
| |
Collapse
|
17
|
Liu Y, Horseman T, Wang Z, Arafat HA, Yin H, Lin S, He T. Negative Pressure Membrane Distillation for Excellent Gypsum Scaling Resistance and Flux Enhancement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1405-1412. [PMID: 34941244 DOI: 10.1021/acs.est.1c07144] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Membrane distillation (MD) has potential to become a competitive technology for managing hypersaline brine but not until the critical challenge of mineral scaling is addressed. The state-of-the-art approach for mitigating mineral scaling in MD involves the use of superhydrophobic membranes that are difficult to fabricate and are commercially unavailable. This study explores a novel operational strategy, namely, negative pressure direct contact membrane distillation (NP-DCMD) that can minimize mineral scaling with commercially available hydrophobic membranes and at the same time enhance the water vapor flux substantially. By applying a negative gauge pressure on the feed stream, NP-DCMD achieved prolonged resistance to CaSO4 scaling and a dramatic vapor flux enhancement up to 62%. The exceptional scaling resistance is attributable to the formation of a concave liquid-gas under a negative pressure that changes the position of the water-air interface to hinder interfacial nucleation and crystal growth. The substantial flux enhancement is caused by the reduced molecular diffusion resistance within the pores and the enhanced heat transfer kinetics across the boundary layer in NP-DCMD. Achieving substantial performance improvement in both the scaling resistance and vapor flux with commercial membranes, NP-DCMD is a significant innovation with vast potential for practical adoption due to its simplicity and effectiveness.
Collapse
Affiliation(s)
- Yongjie Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Thomas Horseman
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Zhangxin Wang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watershed, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hassan A Arafat
- Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Huabing Yin
- School of Engineering, University of Glasgow, Glasgow G12 8LT, U.K
| | - Shihong Lin
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Tao He
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
18
|
Wang Z, Gao J, Zhu L, Meng J, He F. Tannic acid-based functional coating: surface engineering of membranes for oil-in-water emulsion separation. Chem Commun (Camb) 2022; 58:12629-12641. [DOI: 10.1039/d2cc05102h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent progress in the tannic acid-based functional coating for surface engineering of membranes toward oil-in-water emulsion separation is summarized.
Collapse
Affiliation(s)
- Zhenxing Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Jie Gao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Lin Zhu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Jinxuan Meng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Fang He
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
19
|
Mądry K, Nowicki W. Wetting between Cassie-Baxter and Wenzel regimes: a cellular model approach. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:138. [PMID: 34786638 PMCID: PMC8595156 DOI: 10.1140/epje/s10189-021-00140-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
The cellular model with periodic boundary conditions was proposed for the study of liquid-solid interface properties of solid surfaces decorated by a regular pattern. The solid surface was represented by a mosaic of truncated pyramids of two different slopes of side walls equivalent to a surface covered with triangular grooves of different dihedral angles. On the basis of the computations performed for a single elementary cell, the components of the interfacial energies and the apparent contact angles have been found for different Young contact angles and different tilting angles of the pyramid walls. It was found that at certain sets of angles, the wetting takes place with the partial coverage of the pyramid sidewalls-in between the Cassie-Baxter and Wenzel regimes. The influence of the line tension on the studied surface wettability was also examined.
Collapse
Affiliation(s)
- Katarzyna Mądry
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Waldemar Nowicki
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| |
Collapse
|
20
|
Bonilla-Cruz J, Sy JAC, Lara-Ceniceros TE, Gaxiola-López JC, García V, Basilia BA, Advincula RC. Superhydrophobic μ-pillars via simple and scalable SLA 3D-printing: the stair-case effect and their wetting models. SOFT MATTER 2021; 17:7524-7531. [PMID: 34318867 DOI: 10.1039/d1sm00655j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In nature, superhydrophobic surfaces (SHSs) exhibit microstructures with several roughness scales. Scalable fabrication and build-up along the X-Y plane represent the promise of 3D printing technology. Herein we report 3D printed microstructures with a dual roughness scale that achieves SHS using a readily available Formlabs stereolithography (SLA) printer. Pillar-like structure (PLS) arrangements with a wide range of geometrical shapes were 3D printed at three resolutions and two printing orientations. We discovered that a tilted printing direction enables a stair-case pattern on the μ-PLS surfaces, conferring them a μ-roughness that reduces the solid-liquid contact area. The programmed resolution governs the number of polymerized layers that give rise to the stepped pattern on the μ-PLS surfaces. However, this is reduced as the printing resolution increases. Also, all samples' experimental contact angles were consistent with theoretical predictions from Cassie-Baxter, Wenzel, and Nagayama wettability models. The underlying mechanisms and governing parameters were also discussed. It is believed that this work will enable scalable and high throughput roughness design in augmenting future 3D printing object applications.
Collapse
Affiliation(s)
- José Bonilla-Cruz
- Advanced Functional Materials & Nanotechnology Group. Nano & Micro Additive Manufacturing of Polymers and Composite Materials Laboratory "3D LAB". Centro de Investigación en Materiales Avanzados S. C. (CIMAV-Subsede Monterrey), Av. Alianza Norte 202, Autopista Monterrey-Aeropuerto Km 10, PIIT, C.P. 66628, Apodaca-Nuevo León, Mexico.
| | | | | | | | | | | | | |
Collapse
|
21
|
Niu D, Gao H, Tang G, Yan Y. Droplet Nucleation and Growth in the Presence of Noncondensable Gas: A Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9009-9016. [PMID: 34296609 DOI: 10.1021/acs.langmuir.1c00961] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The presence of noncondensable gas (NCG) followed by undesirable heat transfer deterioration cannot be avoided in some situations. In this work, droplet nucleation and growth for the Ar-Ne mixed system are investigated using molecular dynamics simulation. Different droplet state transition modes corresponding to the subcooling degree or NCG content are obtained. The interaction between NCG and a droplet caused by gas enrichment near the solid surface is considered to explain the droplet wetting state during the condensation process. Finally, the disappearance mechanism of the flooding mode on the nanostructured surface under a large amount of NCG is clarified from the nanoscale, which could encourage a clear understanding of the NCG effect on dropwise condensation heat transfer on nanostructured superhydrophobic surfaces.
Collapse
Affiliation(s)
- Dong Niu
- Institute of Refrigeration & Cryogenics Engineering, Dalian Maritime University, Dalian 116026, P. R. China
| | - Hongtao Gao
- Institute of Refrigeration & Cryogenics Engineering, Dalian Maritime University, Dalian 116026, P. R. China
| | - Guihua Tang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuying Yan
- Fluids & Thermal Engineering Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
22
|
Label-free rapid electrochemical detection of DNA hybridization using ultrasensitive standalone CNT aerogel biosensor. Biosens Bioelectron 2021; 191:113480. [PMID: 34242998 DOI: 10.1016/j.bios.2021.113480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/10/2021] [Accepted: 07/02/2021] [Indexed: 01/14/2023]
Abstract
We report the development of an ultrasensitive label-free DNA biosensor device with fully integrated standalone carbon nanotube (CNT) aerogel electrode. The multi-directional tenuous network of clustered CNT embedding into the CNT aerogel electrode demonstrates linear ohmic and near isotropic electrical properties, thereby providing high sensitivity for nucleic acid detection. Using this device, the target DNA hybridization is detected by a quantifiable change in the electrochemical impedance, with a distinct response to the single-stranded probe alone or double-stranded target-probe complex. The target DNA is specifically detected with limit of detection (LoD) of 1 pM with a turnaround time of less than 20 min, which is unprecedented for a miniaturized CNT aerogel sensor and impedance spectroscopy without an intermediate DNA amplification step. Moreover, this system is able to differentiate between the closely related target sequences by the distinct impedance response rendering it highly specific. To the best of our knowledge, this is the first report showing the use of standalone bare CNT aerogel electrode without any substrate support, coupled with electrochemical impedance spectroscopy, for the detection of DNA hybridization. Altogether, the results show that our system is fast, sensitive and specific for label-free rapid direct DNA detection, promising a novel avenue for bio-sensing.
Collapse
|
23
|
Fabrication and Characterization of Hydrophobic Porous Metallic Membranes for High Temperature Applications. Processes (Basel) 2021. [DOI: 10.3390/pr9050809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hydrophobic porous metallic membranes can be integrated in a microreactor for in situ separation of steam at high temperatures. This study investigates the fabrication and characterization of hydrophobic coatings on metallic substrates. Two different coating methods were explored: (1) Plasma Enhanced—Chemical Vapor Deposition (PE-CVD) to form amorphous carbon silicon-doped a-C:H:Si:O thin films and (2) Direct Immersion in fluoroalkyl silane (FAS-13) solution using dip coating to form Self-Assembled Monolayers. The results on wettability as well as SEM images and EDS/WDS analyses indicate that the coated sintered stainless steel membranes are adequate as hydrophobic surfaces, maintaining the porosity of the substrate and withstanding high temperatures. Especially the FAS-13 coating shows very good resistance to temperatures higher than 250 °C. These findings are of special significance for the fabrication of porous metal membranes for separation of steam in high temperature applications.
Collapse
|
24
|
Formentín P, Marsal LF. Hydrophobic/Oleophilic Structures Based on MacroPorous Silicon: Effect of Topography and Fluoroalkyl Silane Functionalization on Wettability. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:670. [PMID: 33803099 PMCID: PMC7998800 DOI: 10.3390/nano11030670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022]
Abstract
The effect of the morphology and chemical composition of a surface on the wettability of porous silicon structures is analyzed in the present work. Hydrophobic and superhydrophobic macroporous substrates are attractive for different potential applications. Herein, different hydrophobic macroporous silicon structures were fabricated by the chemical etching of p-type silicon wafers in a solution based on hydrofluoric acid and coated with a fluoro silane self-assembled monolayer. The surface morphology of the final substrate was characterized using a scanning electron microscope. The wettability was assessed from contact angle measurements using water and organic solvents that present low surface energy. The experimental data were compared with the classical wetting states theoretical models described in the literature. Perfluoro-silane functionalized macroporous silicon surfaces presented systematically higher contact angles than untreated silicon substrates. The influence of porosity on the surface wettability of macoporous silicon structures has been established. These results suggest that the combination of etching conditions with a surface chemistry modification could lead to hydrophobic/oleophilic or superhydrophobic/oleophobic structures.
Collapse
Affiliation(s)
| | - Lluís F. Marsal
- Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Avinguda Països Catalans, 26 43007 Tarragona, Spain;
| |
Collapse
|
25
|
Zhang D, Takase S, Nagayama G. Measurement of effective wetting area at hydrophobic solid-liquid interface. J Colloid Interface Sci 2021; 591:474-482. [PMID: 33640849 DOI: 10.1016/j.jcis.2021.01.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
HYPOTHESES The effective wetting area, a parameter somewhat different from the apparent contact area at solid-liquid interfaces, plays a significant role in surface wettability. However, determination of the effective wetting area for hydrophobic surfaces remains an open question. In the present study, we developed an electrochemical impedance method to evaluate the effective wetting area at a hydrophobic solid-liquid interface. EXPERIMENTS Patterned Si surfaces were prepared using the anisotropic wet etching method, and the water contact angle and electrochemical impedance were measured experimentally. The effective wetting area at the solid-liquid interface was examined based on the wettability and impedance results. FINDINGS The electrochemical impedance for the patterned Si surfaces increased with increasing surface hydrophobicity, whereas the effective wetting area decreased. The intermediate wetting state (i.e. partial wetting model) was confirmed at the patterned Si surfaces, and the effective wetting area was theoretically estimated. The effective wetting area predicted from the electrochemical impedance agreed well with that predicted from the partial wetting model, thereby demonstrating the validity of the electrochemical impedance method for evaluating the effective wetting area at the hydrophobic solid-liquid interface.
Collapse
Affiliation(s)
- Dejian Zhang
- Department of Mechanical Engineering, Kyushu Institute of Technology, Sensui 1-1, Tobata, Kitakyushu, Fukuoka 804-8550, Japan
| | - Satoko Takase
- Department of Chemical Engineering, Kyushu Institute of Technology, Sensui 1-1, Tobata, Kitakyushu, Fukuoka 804-8550, Japan
| | - Gyoko Nagayama
- Department of Mechanical Engineering, Kyushu Institute of Technology, Sensui 1-1, Tobata, Kitakyushu, Fukuoka 804-8550, Japan.
| |
Collapse
|
26
|
Liu X, Yang F, Guo J, Fu J, Guo Z. New insights into unusual droplets: from mediating the wettability to manipulating the locomotion modes. Chem Commun (Camb) 2020; 56:14757-14788. [PMID: 33125006 DOI: 10.1039/d0cc05801g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ability to manipulate droplets can be utilized to develop various smart sensors or actuators, endowing them with fascinating applications for drug delivery, detection of target analytes, environmental monitoring, intelligent control, and so on. However, the stimuli-responsive superhydrophobic/superhydrophilic materials for normal water droplets cannot satisfy the requirements from some certain circumstances, i.e., liquid lenses and biosensors (detection of various additives in water/blood droplets). Stimuli-responsive wetting/dewetting behaviors of exceptional droplets are open issues and are attracting much attention from across the world. In this perspective article, the unconventional droplets are divided into three categories: ionic or surfactant additives in water droplets, oil droplets, and bubble droplets. We first introduce several classical wettability models of droplets and some methods to achieve wettability transition. The unusual droplet motion is also introduced in detail. There are four main types of locomotion modes, which are vertical rebound motion, lateral motion, self-propulsion motion, and anisotropic wettability controlled sliding behavior. The driving mechanism for the droplet motion is briefly introduced as well. Some approaches to achieve this manipulation goal, such as light irradiation, electronic, magnetic, acid-base, thermal, and mechanical ways will be taken into consideration. Finally, the current researches on unconventional droplets extending to polymer droplets and liquid metal droplets on the surface of special wettability materials are summarized and the prospect of unconventional droplet research directions in the field of on-demand transport application will be proposed.
Collapse
Affiliation(s)
- Xianchen Liu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | - Fuchao Yang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | - Jie Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | - Jing Fu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China. and School of Chemistry and Environment Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
27
|
Degradation of Hydrophobic, Anti-Soiling Coatings for Solar Module Cover Glass. ENERGIES 2020. [DOI: 10.3390/en13153811] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Soiling of solar module cover glass is a serious problem for solar asset managers. It causes a reduction in power output due to attenuation of the incident light, and reduces the return on investment. Regular cleaning is required to mitigate the effect but this is a costly procedure. The application of transparent hydrophobic, anti-soiling coatings to the cover glass is a promising solution. These coatings have low surface energy and contaminants do not adhere well. Even if soiling does remain on the coated surface, it is much more easily removed during cleaning. The performance of the coatings is determined using the water contact angle and roll-off angle measurements. However, although hydrophobic coatings hold out great promise, outdoor testing revealed degradation that occurs surprisingly quickly. In this study, we report on results using laboratory-based damp heat and UV exposure environmental tests. We used SEM surface imaging and XPS surface chemical analysis to study the mechanisms that lead to coating degradation. Loss of surface fluorine from the coatings was observed and this appeared to be a major issue. Loss of nanoparticles was also observed. Blistering of surfaces also occurs, leading to loss of coating material. This was probably due to the movement of retained solvents and was caused by insufficient curing. This mechanism is avoidable if care is taken for providing and carrying out carefully specified curing conditions. All these symptoms correlate well with observations taken from parallel outdoor testing. Identification of the mechanisms involved will inform the development of more durable anti-soiling, hydrophobic coatings for solar application.
Collapse
|