1
|
Ruiz-Arias A, Fueyo-González F, Izquierdo-García C, Navarro A, Gutiérrez-Rodríguez M, Herranz R, Burgio C, Reinoso A, Cuerva JM, Orte A, González-Vera JA. Exchangeable Self-Assembled Lanthanide Antennas for PLIM Microscopy. Angew Chem Int Ed Engl 2024; 63:e202314595. [PMID: 37991081 DOI: 10.1002/anie.202314595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 11/23/2023]
Abstract
Lanthanides have unique photoluminescence (PL) emission properties, including very long PL lifetimes. This makes them ideal for biological imaging applications, especially using PL lifetime imaging microscopy (PLIM). PLIM is an inherently multidimensional technique with exceptional advantages for quantitative biological imaging. Unfortunately, due to the required prolonged acquisitions times, photobleaching of lanthanide PL emission currently constitutes one of the main drawbacks of PLIM. In this study, we report a small aqueous-soluble, lanthanide antenna, 8-methoxy-2-oxo-1,2,4,5-tetrahydrocyclopenta[de]quinoline-3-phosphonic acid, PAnt, specifically designed to dynamically interact with lanthanide ions, serving as exchangeable dye aimed at mitigating photobleaching in PLIM microscopy in cellulo. Thus, self-assembled lanthanide complexes that may be photobleached during image acquisition are continuously replenished by intact lanthanide antennas from a large reservoir. Remarkably, our self-assembled lanthanide complex clearly demonstrated a significant reduction of PL photobleaching when compared to well-established lanthanide cryptates, used for bioimaging. This concept of exchangeable lanthanide antennas opens new possibilities for quantitative PLIM bioimaging.
Collapse
Affiliation(s)
- Alvaro Ruiz-Arias
- Nanoscopy-UGR Laboratory. Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071, Granada, Spain
| | - Francisco Fueyo-González
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
- Current address: Department of Medicine, Translational Transplant Research Center, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Amparo Navarro
- Departamento de Química Física y Analítica, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071, Jaén, Spain
| | - Marta Gutiérrez-Rodríguez
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
- PTI-Global Health CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | - Rosario Herranz
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Chiara Burgio
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071, Granada, Spain
| | - Antonio Reinoso
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071, Granada, Spain
| | - Juan M Cuerva
- Departamento de Química Orgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, 18071, Granada, Spain
| | - Angel Orte
- Nanoscopy-UGR Laboratory. Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071, Granada, Spain
| | - Juan A González-Vera
- Nanoscopy-UGR Laboratory. Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, Universidad de Granada, Campus Cartuja, 18071, Granada, Spain
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| |
Collapse
|
2
|
Huayu W, Chunpo G, Tianjun N, Zhijun Y, Kaiwen C. A red dicyanoisophorone-based fluorescent probe for monitoring cysteine fluctuations due to redox imbalances in living organisms even in the presence of other biological molecules. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
A novel selective probe for detecting glutathione from other biothiols based on the concept of Fluorescence Fusion. Anal Chim Acta 2021; 1177:338786. [PMID: 34482889 DOI: 10.1016/j.aca.2021.338786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/24/2021] [Accepted: 06/17/2021] [Indexed: 01/23/2023]
Abstract
Biological thiols importantly regulate the intracellular redox activity and metabolic level, but many of the developed probes for biothiols are facing difficulty in effectively distinguishing GSH from Cys/Hcy due to the similarity in mechanism. In this work, despite the previous pattern of "Logic Gate", we reported the concept of "Fluorescence Fusion" for the first time to achieve only one excitation-emission process. The exploited the probe, MZ-NBD, could quickly measure GSH in 10 min with a large Stokes shift (130 nm). Though the reacting mechanism was similar, only GSH could cause the "Fluorescence Fusion" with only one strong fluorescence response while Cys/Hcy caused two peaks. Adjusting the excitation wavelength could hardly split the fused peak into two. Though image recognition by artificial intelligence could easily distinguish the patterns of peaks, here we used the signal-treating method to realize the high selectivity towards GSH. Moreover, MZ-NBD could be utilized for rapid detection of GSH in living MCF-7 cells, which was more suitable for GSH than using the "Logic Gate" strategy. More than introducing a novel probe with the new concept, this work was meaningful as the linker of traditional reaction-based fluorescent probes and potential image recognition by artificial intelligence, thus led to various future researches in inter-disciplines.
Collapse
|
4
|
Sidhu JS, Kaur N, Singh N. Trends in small organic fluorescent scaffolds for detection of oxidoreductase. Biosens Bioelectron 2021; 191:113441. [PMID: 34167075 DOI: 10.1016/j.bios.2021.113441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/23/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022]
Abstract
Oxidoreductases are diverse class of enzymes engaged in modulating the redox homeostasis and cellular signaling cascades. Abnormal expression of oxidoreductases including thioredoxin reductase, azoreductase, cytochrome oxidoreductase, tyrosinase and monoamine oxidase leads to the initiation of numerous disorders. Thus, enzymes are the promising biomarkers of the diseased cells and their accurate detection has utmost significance for clinical diagnosis. The detection method must be extremely selective, sensitive easy to use, long self-life, mass manufacturable and disposable. Fluorescence assay approach has been developed potential substitute to conventional techniques used in enzyme's quantification. The fluorescent probes possess excellent stability, high spatiotemporal ratio and reproducibility represent applications in real sample analysis. Therefore, the enzymatic transformations have been monitored by small activatable organic fluorescent probes. These probes are generally integrated with enzyme's substrate/inhibitors to improve their binding affinity toward the enzyme's catalytic site. As the recognition unit bio catalyzed, the signaling unit produces the readout signals and provides novel insights to understand the biochemical reactions for diagnosis and development of point of care devices. Several structural modifications are required in fluorogenic scaffolds to tune the selectivity for a particular enzyme. Hence, the fluorescent probes with their structural features and enzymatic reaction mechanism of oxidoreductase are the key points discussed in this review. The basic strategies to detect each enzyme are discussed. The selectivity, sensitivity and real-time applications are critically compared. The kinetic parameters and futuristic opportunities are present, which would be enormous benefits for chemists and biologists to understand the facts to design and develop unique fluorophore molecules for clinical applications.
Collapse
Affiliation(s)
- Jagpreet Singh Sidhu
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India; Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh, 160014, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India.
| |
Collapse
|
5
|
Sun ZB, Hua Y, Gao MJ, Shang YJ, Kang YF. Highly Selective Fluorescent 4-(4-(Diethylamino)-2-Hydroxystyryl)-1-Methylpyridine Iodide and Nitrobenzofurazan Based Probe for Cysteine with Application in Living Cells. ANAL LETT 2021. [DOI: 10.1080/00032719.2020.1767121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Zhi-Bin Sun
- College of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Yun Hua
- College of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Meng-Jiao Gao
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, and College of Laboratory Medicine, Hebei North University, Zhangjiakou, China
| | - Ya-jing Shang
- College of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Yan-Fei Kang
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, and College of Laboratory Medicine, Hebei North University, Zhangjiakou, China
| |
Collapse
|
6
|
Fang F, Liu SJ, Fan XJ, Yang YS, Li Z. A curcumin-analogous fluorescent sensor for cysteine detection with a bilateral-response click-like mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118879. [PMID: 32920440 DOI: 10.1016/j.saa.2020.118879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
A novel curcumin-analogous fluorescent sensor, DNP, was developed for cysteine detection with a bilateral-response click-like mechanism. DNP indicated high selectivity and practical sensitivity. It could recognize Cys from other biologically relevant molecules, especially, from GSH and Hcy. The most interesting point was that, with typical azide groups for sensing, DNP indicated a covalent binding procedure with Cys instead of a presupposed simple reduction for reductive sulfide. Moreover, the recognition occurred at both sides of the sensor. DNP could be utilized into the detection of endogenous and exogenous Cys in living cells. Though the specific optical performances of DNP still need optimization, this work supplied novel information for broadening the vision on fluorophores and mechanisms, for the monitoring of Cys and even other sulfur-containing species.
Collapse
Affiliation(s)
- Fang Fang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sheng-Jin Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiang-Jun Fan
- Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, No.163 Xianlin Road, Nanjing 210023, China.
| | - Zhen Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, No.163 Xianlin Road, Nanjing 210023, China.
| |
Collapse
|
7
|
Rohilla D, Chaudhary S, Kaur N, Shanavas A. Dopamine functionalized CuO nanoparticles: A high valued “turn on” colorimetric biosensor for detecting cysteine in human serum and urine samples. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110724. [DOI: 10.1016/j.msec.2020.110724] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/14/2020] [Accepted: 02/03/2020] [Indexed: 01/12/2023]
|
8
|
Zhang S, Wu D, Wu J, Xia Q, Jia X, Song X, Zeng L, Yuan Y. A water-soluble near-infrared fluorescent probe for sensitive and selective detection of cysteine. Talanta 2019; 204:747-752. [DOI: 10.1016/j.talanta.2019.06.074] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/09/2019] [Accepted: 06/18/2019] [Indexed: 01/25/2023]
|
9
|
Development of a new fluorescent probe for cysteine detection in processed food samples. Anal Bioanal Chem 2019; 411:6203-6212. [PMID: 31300856 DOI: 10.1007/s00216-019-02012-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/15/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
Cysteine is a crucial amino acid, found in a huge amount in protein-rich foods. We focused our research to determine the amount of free cysteine consumed highly in foods such as pork, beef, poultry, eggs, dairy, red peppers, soybeans, broccoli, brussels sprouts, oats, and wheat germs. A newly designed carbazole-pyridine-based fluorescent probe (CPI) has been introduced for quantitative estimation of cysteine (Cys) with a "turn on" fluorescence in some popular processed food samples chosen from our daily diet. CPI shows both naked eye and UV-visible color changes upon interaction with cysteine. The binding approach between CPI and Cys at biological pH has been thoroughly explored by UV-visible and fluorescence spectroscopy. From Job's plot analysis, 1:1 stoichiometric reaction between CPI and Cys is observed with a detection limit of 3.8 μM. NMR, ESI mass spectrometry, and time-dependent density functional theory (TD-DFT) study enlightens the formation of more stable product CPI-Cys. The "turn on" response of the probe CPI occurs due to the interruption of intra-molecular charge transfer (ICT) process upon reacting with cysteine. Moreover, CPI is a very stable, cost-effective compound and exhibits excellent real-time selectivity towards Cys over all other comparative biorelevant analytes. Interestingly, our proposed method is much advantageous as it is able to estimate cysteine predominantly by screening out other comparative biocomponents found in different protein-rich foods.
Collapse
|