1
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
2
|
Jia TT, Zhang Y, Hou JT, Niu H, Wang S. H 2S-based fluorescent imaging for pathophysiological processes. Front Chem 2023; 11:1126309. [PMID: 36778034 PMCID: PMC9911449 DOI: 10.3389/fchem.2023.1126309] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Hydrogen sulfide (H2S), as an important endogenous signaling molecule, plays a vital role in many physiological processes. The abnormal behaviors of hydrogen sulfide in organisms may lead to various pathophysiological processes. Monitoring the changes in hydrogen sulfide is helpful for pre-warning and treating these pathophysiological processes. Fluorescence imaging techniques can be used to observe changes in the concentration of analytes in organisms in real-time. Therefore, employing fluorescent probes imaging to investigate the behaviors of hydrogen sulfide in pathophysiological processes is vital. This paper reviews the design strategy and sensing mechanisms of hydrogen sulfide-based fluorescent probes, focusing on imaging applications in various pathophysiological processes, including neurodegenerative diseases, inflammation, apoptosis, oxidative stress, organ injury, and diabetes. This review not only demonstrates the specific value of hydrogen sulfide fluorescent probes in preclinical studies but also illuminates the potential application in clinical diagnostics.
Collapse
Affiliation(s)
- Tong-Tong Jia
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
| | - Yuanyuan Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Ji-Ting Hou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Huawei Niu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Shan Wang
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Chen Y, Wei M, Lee J, Zhao J, Lin P, Wang Q, Li F, Ling D. Neurodegenerative Disease Diagnosis via Ion‐Level Detection in the Brain. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ying Chen
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou Zhejiang 310058 P.R. China
| | - Min Wei
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou Zhejiang 310058 P.R. China
| | - Jiyoung Lee
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou Zhejiang 310058 P.R. China
| | - Jing Zhao
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou Zhejiang 310058 P.R. China
| | - Peihua Lin
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou Zhejiang 310058 P.R. China
| | - Qiyue Wang
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou Zhejiang 310058 P.R. China
| | - Fangyuan Li
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou Zhejiang 310058 P.R. China
- Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou Zhejiang 310058 P.R. China
- Key Laboratory of Biomedical Engineering of the Ministry of Education College of Biomedical Engineering & Instrument Science Zhejiang University Hangzhou Zhejiang 310058 P.R. China
| | - Daishun Ling
- Institute of Pharmaceutics College of Pharmaceutical Sciences Zhejiang University Hangzhou Zhejiang 310058 P.R. China
- Hangzhou Institute of Innovative Medicine Zhejiang University Hangzhou Zhejiang 310058 P.R. China
- Key Laboratory of Biomedical Engineering of the Ministry of Education College of Biomedical Engineering & Instrument Science Zhejiang University Hangzhou Zhejiang 310058 P.R. China
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Institute of Translational Medicine Shanghai Jiao Tong University Shanghai 200240 P.R. China
| |
Collapse
|
4
|
Chen J, Huang D, She M, Wang Z, Chen X, Liu P, Zhang S, Li J. Recent Progress in Fluorescent Sensors for Drug-Induced Liver Injury Assessment. ACS Sens 2021; 6:628-640. [PMID: 33475340 DOI: 10.1021/acssensors.0c02343] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Drug-induced liver injury (DILI) is a persistent concern in drug discovery and clinical medicine. The current clinical methods to assay DILI by analyzing the enzymes in serum are still not optimal. Recent studies showed that fluorescent sensors would be efficient tools for detecting the concentration and distribution of DILI indicators with high sensitivity and specificity, in real-time, in situ, and with low damage to biosamples, as well as diagnosing DILI. This review focuses on the assessment of DILI, introduces the current mechanisms of DILI, and summarizes the design strategies of fluorescent sensors for DILI indicators, including ions, small molecules, and related enzymes. Some challenges for developing DILI diagnostic fluorescent sensors are put forward. We believe that these design strategies and challenges to evaluate DILI will inspire chemists and give them opportunities to further develop other fluorescent sensors for accurate diagnoses and therapies for other diseases.
Collapse
Affiliation(s)
- Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Dongyu Huang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Biomedicine Key Laboratory of Shaanxi Province; Lab of Tissue Engineering, the College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi province 710069, P. R. China
| | - Zesi Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Xi Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Ping Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi province 710127, P. R. China
| |
Collapse
|
5
|
Ma S, Chen G, Xu J, Liu Y, Li G, Chen T, Li Y, James TD. Current strategies for the development of fluorescence-based molecular probes for visualizing the enzymes and proteins associated with Alzheimer’s disease. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213553] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Chen X, Bian Y, Li M, Zhang Y, Gao X, Su D. Activatable Off-on Near-Infrared QCy7-based Fluorogenic Probes for Bioimaging. Chem Asian J 2020; 15:3983-3994. [PMID: 33034939 DOI: 10.1002/asia.202001057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/08/2020] [Indexed: 01/26/2023]
Abstract
The activatable off-on near-infrared QCy7-based fluorogenic probes have emerged as powerful modalities for detecting and monitoring biological analytes and understanding their biological processes in cells and organisms. The use of biomarker-activated QCy7-based probes enables simple synthesis, minimum photo-damage to biological samples, and minimum background interference from biological systems. In this minireview, we aim to provide a rigorous but concise overview of activatable QCy7-based fluorogenic probes by reporting the significant progress made in recent years. The design strategies and the main applications of accurate detection and imaging of disease-related biomarkers (including ROS/RSS, enzymes, metal ions, and other related species) were reasonably analyzed and discussed. The potential challenges and prospects of activatable QCy7-based fluorogenic probes are also emphasized to further advance the development of new methods for biomarker detection and bioimaging.
Collapse
Affiliation(s)
- Xueqian Chen
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yongning Bian
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Mingrui Li
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yong Zhang
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Xueyun Gao
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Dongdong Su
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| |
Collapse
|
7
|
Zhou J, Jangili P, Son S, Ji MS, Won M, Kim JS. Fluorescent Diagnostic Probes in Neurodegenerative Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001945. [PMID: 32902000 DOI: 10.1002/adma.202001945] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/19/2020] [Indexed: 05/22/2023]
Abstract
Neurodegenerative diseases are debilitating disorders that feature progressive and selective loss of function or structure of anatomically or physiologically associated neuronal systems. Both chronic and acute neurodegenerative diseases are associated with high morbidity and mortality along with the death of neurons in different areas of the brain; moreover, there are few or no effective curative therapy options for treating these disorders. There is an urgent need to diagnose neurodegenerative disease as early as possible, and to distinguish between different disorders with overlapping symptoms that will help to decide the best clinical treatment. Recently, in neurodegenerative disease research, fluorescent-probe-mediated biomarker visualization techniques have been gaining increasing attention for the early diagnosis of neurodegenerative diseases. A survey of fluorescent probes for sensing and imaging biomarkers of neurodegenerative diseases is provided. These imaging probes are categorized based on the different potential biomarkers of various neurodegenerative diseases, and their advantages and disadvantages are discussed. Guides to develop new sensing strategies, recognition mechanisms, as well as the ideal features to further improve neurodegenerative disease fluorescence imaging are also explored.
Collapse
Affiliation(s)
- Jin Zhou
- College of Pharmacy, Weifang Medical University, Weifang, 261053, China
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Paramesh Jangili
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Subin Son
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Myung Sun Ji
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Miae Won
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
8
|
Yang Z, Li H, Xu T, Liu X, Zhao S, Yang Z. Azaaromatic Functionalized Rhodamine Based Fluorescent Probes for Selective Dual Channel Detection of ClO− and Cu2+ in Water Samples and Living Cells. CHEM LETT 2020. [DOI: 10.1246/cl.200491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zheng Yang
- School of Chemistry & Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710054, P. R. China
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi’an 710012, P. R. China
| | - Hui Li
- School of Chemistry & Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710054, P. R. China
| | - TianTian Xu
- School of Chemistry & Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710054, P. R. China
| | - Xiangrong Liu
- School of Chemistry & Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710054, P. R. China
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi’an 710012, P. R. China
| | - Shunsheng Zhao
- School of Chemistry & Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710054, P. R. China
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi’an 710012, P. R. China
| | - Zaiwen Yang
- School of Chemistry & Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710054, P. R. China
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi’an 710012, P. R. China
| |
Collapse
|