1
|
Yang J, Liu Y, He L, Yu W, Liu H, Chen T. X-ray-Sensitive Selenium Nanoparticles Enhance Esophageal Squamous Cell Carcinoma Radiotherapy through Activating P53/IGFBP3 Pathway by Regulating GPX2. ACS APPLIED MATERIALS & INTERFACES 2025; 17:24865-24876. [PMID: 40241246 DOI: 10.1021/acsami.4c22183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Radiotherapy remains a crucial treatment for esophageal squamous cell carcinoma (ESCC), although the development of radiation resistance and the occurrence of radiation-induced side effects pose significant clinical challenges. Selenium (Se) has obvious antitumor effects, but the sensitizing effect and mechanism of Se nanoparticles in ESCC radiotherapy remain to be determined. The aim of this study was to investigate which form of Se have superior sensitization of ESCC and to investigate how Se nanoparticles (LNT-SeNPs) can enhance the radiosensitivity of ESCC. Our findings indicate that LNT-SeNPs exhibit remarkable radiosensitizing activity with a higher safety index. These nanoparticles effectively inhibit cell growth, induce S-phase arrest, and promote apoptosis through increased reactive oxygen species (ROS) production. Furthermore, analysis via the GEO database revealed the correlation between the selenoprotein GPX2 and the radiosensitivity of esophageal cancer. Further investigations demonstrate that LNT-SeNPs suppress GPX2 expression, leading to apoptosis in ESCC cells via the p53/IGFBP3 signaling pathway. In conclusion, this study elucidates that LNT-SeNPs can enhance the effectiveness of radiotherapy for esophageal cancer, providing valuable insights into the potential use of Se-based drugs as adjunctive therapy. These findings pave the way for future clinical applications aimed at improving therapeutic outcomes in patients undergoing radiotherapy for ESCC.
Collapse
Affiliation(s)
- Jianwei Yang
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Ying Liu
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
- Department of Neurology, The First Affiliated Hospital of Jinan University, Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Lizhen He
- Department of Neurology, The First Affiliated Hospital of Jinan University, Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Wenfang Yu
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
- Department of Neurology, The First Affiliated Hospital of Jinan University, Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Hongmei Liu
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Tianfeng Chen
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, The Affliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
- Department of Neurology, The First Affiliated Hospital of Jinan University, Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Wei S, Cui X, Li T, Ma X, Liu L. Pillar[n]arene-Based Supramolecular Nanodrug Delivery Systems for Cancer Therapy. ChemMedChem 2025; 20:e202400822. [PMID: 39833508 DOI: 10.1002/cmdc.202400822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/27/2024] [Indexed: 01/22/2025]
Abstract
Macrocyclic supramolecular materials play an important role in encapsulating anticancer drugs to improve the anticancer efficiency and reduce the toxicity to normal tissues through host-guest interactions. Among them, pillar[n]arenes, as an emerging class of supramolecular macrocyclic compounds, have attracted increasing attention in drug delivery and drug-controlled release due to their high biocompatibility, excellent host-guest chemistry, and simplicity of modification. In this review, we summarize the research progress of pillar[n]arene-based supramolecular nanodrug delivery systems (SNDs) in recent years in the field of tumor therapy, including drug-controlled release, imaging diagnostics and therapeutic modalities. Furthermore, the opportunities and major limitations of pillar[n]arene-based SNDs for tumor therapy are discussed.
Collapse
Affiliation(s)
- Shubin Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Xinyi Cui
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Tingting Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Xin Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Luzhi Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Guangxi Engineering Research Center for New Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, Guangxi, 535011, PR China
| |
Collapse
|
3
|
Jiang Y, Tang Y, Li Y, Liu L, Yue K, Li X, Qiu P, Yin R, Jiang T. Psammaplin A analogues with modified disulfide bond targeting histone deacetylases: Synthesis and biological evaluation. Eur J Med Chem 2024; 275:116541. [PMID: 38851056 DOI: 10.1016/j.ejmech.2024.116541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/02/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024]
Abstract
Psammaplin A (PsA), a symmetrical bromotyrosine-derived disulfide marine metabolite, has been reported could inhibit HDAC1/2/3 through its thiol monomer. Inspired by the disuflide bond structure of this marine natural product, we designed and synthesized a series of PsA analogues, in which the disulfide bond of PsA was replaced with diselenide bond or cyclic disulfide/diselenide/selenenylsulfide motifs. We also studied the HDAC inhibition, cell growth inhibition, and apoptosis induction of these PsA analogues. The results showed that, all the synthetic diselenide analogues and cyclic selenenyl sulfide compounds exhibited better antiproferative activity than their counterpart of disulfide analogues. Among the prepared analogues, diselenide analogue P-503 and P-116 significantly increased the ability of inhibiting HDAC6 and induced apoptosis and G2/M cell cycle arrest. However, cyclic selenenylsulfides analogues P-111 lost its HDAC inhibitory ability and exhibited no effect on cell cycle and apoptosis, indicating that the anti-proliferative mechanism of cyclic selenenylsulfides analogues has changed.
Collapse
Affiliation(s)
- Yukun Jiang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Ya Tang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yuxuan Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Lu Liu
- Marine Biomedical Research Institute of Qingdao, Qingdao, 266237, China
| | - Kairui Yue
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Peiju Qiu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266237, China.
| | - Ruijuan Yin
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao, 266237, China.
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
4
|
Coady Z, Smith JN, Wilson KA, White NG. Stereoselective Single Step Cyclization to Give Belt-Functionalized Pillar[6]arenes. J Org Chem 2024; 89:1397-1406. [PMID: 38214497 DOI: 10.1021/acs.joc.3c01868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Two macrocycles were synthesized through cyclization reactions of secondary benzylic alcohols, giving pillar[6]arenes with a methyl substituent at each belt position. These macrocycles form stereoselectively with only the rtctct isomer with alternating up and down orientations of the belt methyl groups definitively identified. Isolated yields were modest (7 and 9%), but the macrocycles are prepared in a single step from either a commercially available alcohol or a very readily prepared precursor. X-ray crystal structures of the macrocycles indicate they have a capsule-like structure, which is far from the conventional pillar shape. Density functional theory calculations reveal that the energy barrier required to obtain the pillar conformation is significantly higher for these belt-functionalized macrocycles than for conventional belt-unfunctionalized pillar[6]arenes.
Collapse
Affiliation(s)
- Zeke Coady
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Jordan N Smith
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Katie A Wilson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1C 5S7, Canada
| | - Nicholas G White
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
5
|
Li Z, Shen Z, Pei Y, Chao S, Pei Z. Covalently bridged pillararene-based polymers: structures, synthesis, and applications. Chem Commun (Camb) 2023; 59:989-1005. [PMID: 36621829 DOI: 10.1039/d2cc05594e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Covalently bridged pillararene-based polymers (CBPPs) are a special class of macrocycle-based polymers in which multiple pillararene monomers are attached to the polymer structures by covalent bonds. Owing to the unique molecular structures including the connection components or the spatial structures, CBPPs have become increasingly popular in applications ranging from environmental science to biomedical science. In this review, CBPPs are divided into three types (linear polymers, grafted polymers, and cross-linked polymers) according to their structural characteristics and described from the perspective of synthesis methods comprehensively. In addition, the applications of CBPPs are presented, including selective adsorption and separation, fluorescence sensing and detection, construction of supramolecular gels, anticancer drug delivery, artificial light-harvesting, catalysis, and others. Finally, the current challenging issues and comprehensive prospects of CBPPs are discussed.
Collapse
Affiliation(s)
- Zhanghuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Ziyan Shen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Shuang Chao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China. .,College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China. .,College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
6
|
Wang Z, Sun C, Wang R. Macrocycle-Surfaced Polymer Nanocapsules: An Emerging Paradigm for Biomedical Applications. Bioconjug Chem 2022; 33:2254-2261. [PMID: 35436111 DOI: 10.1021/acs.bioconjchem.2c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the recent decade, macrocycle-surfaced polymer nanocapsules have been developed and studied as potential drug carriers. In particular, a unique group of these nanocapsules were constructed from a covalently self-assembled polymer network based on several classic macrocycles including cucurbituril, pillararene, and calixarene. The unique structure of these nanocapsules consists of a liquid or solid core and a shell laced with macrocycles in which the macrocycles not only act as the shell matrix of the nanocapsules but also allow further facile, modular functionalization via host-guest interactions with guest-tagged molecules. More interestingly, when a responsive cross-linker was introduced between the macrocycles, the payload inside the nanocapsules could be selectively released in the presence of typical hallmarks of certain diseases, which is of great interest for biomedical applications. In this Topical Review, macrocycle-surfaced polymer nanocapsules derived from covalently self-assembled polymer networks are introduced systemically with a focus on the molecular design and biomedical applications.
Collapse
Affiliation(s)
- Ziyi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Chen Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| |
Collapse
|
7
|
Li Y, Su Y, Li Z, Chen Y. Supramolecular Combination Cancer Therapy Based on Macrocyclic Supramolecular Materials. Polymers (Basel) 2022; 14:polym14224855. [PMID: 36432982 PMCID: PMC9696801 DOI: 10.3390/polym14224855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
Supramolecular combination therapy adopts supramolecular materials to design intelligent drug delivery systems with different strategies for cancer treatments. Thereinto, macrocyclic supramolecular materials play a crucial role in encapsulating anticancer drugs to improve anticancer efficiency and decrease toxicity towards normal tissue by host-guest interaction. In general, chemotherapy is still common therapy for solid tumors in clinics. However, supramolecular combination therapy can overcome the limitations of the traditional single-drug chemotherapy in the laboratory findings. In this review, we summarized the combination chemotherapy, photothermal chemotherapy, and gene chemotherapy based on macrocyclic supramolecular materials. Finally, the application prospects in supramolecular combination therapy are discussed.
Collapse
|
8
|
Emerging Roles of Green-Synthesized Chalcogen and Chalcogenide Nanoparticles in Cancer Theranostics. JOURNAL OF NANOTECHNOLOGY 2022. [DOI: 10.1155/2022/6176610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The last few decades have seen an overwhelming increase in the amount of research carried out on the use of inorganic nanoparticles. More fascinating is the tremendous progress made in the use of chalcogen and chalcogenide nanoparticles in cancer theranostics. These nanomaterials, which were initially synthesized through chemical methods, have now been efficiently produced using different plant materials. The paradigm shift towards the biogenic route of nanoparticle synthesis stems from its superior advantages of biosafety, eco-friendliness, and simplicity, among others. Despite a large number of reviews available on inorganic nanoparticle synthesis through green chemistry, there is currently a dearth of information on the green synthesis of chalcogens and chalcogenides for cancer research. Nanoformulations involving chalcogens such as sulfur, selenium, and tellurium and their respective chalcogenides have recently emerged as promising tools in cancer therapeutics and diagnosis. Similar to other inorganic nanoparticles, chalcogens and chalcogenides have been synthesized using plant extracts and their purified biomolecules. In this review, we provide an up-to-date discussion of the recent progress that has been made in the plant-mediated synthesis of chalcogens and chalcogenides with a special focus on their application in cancer theranostics.
Collapse
|
9
|
Liu S, Deng S, Yan T, Zhang X, Tian R, Xu J, Sun H, Yu S, Liu J. Biocompatible Diselenide-Containing Protein Hydrogels with Effective Visible-Light-Initiated Self-Healing Properties. Polymers (Basel) 2021; 13:4360. [PMID: 34960914 PMCID: PMC8707953 DOI: 10.3390/polym13244360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Smart hydrogels are typical functional soft materials, but their functional and mechanical properties are compromised upon micro- or macro-mechanical damage. In contrast, hydrogels with self-healing properties overcome this limitation. Herein, a dual dynamic bind, cross-linked, self-healing protein hydrogel is prepared, based on Schiff base bonds and diselenide bonds. The Schiff base bond is a typical dynamic covalent bond and the diselenide bond is an emerging dynamic covalent bond with a visible light response, which gives the resulting hydrogel a dual response in visible light and a desirable self-healing ability. The diselenide-containing protein hydrogels were biocompatible due to the fact that their main component was protein. In addition, the hydrogels loaded with glucose oxidase (GOx) could be transformed into sols in glucose solution due to the sensitive response of the diselenide bonds to the generated hydrogen peroxide (H2O2) by enzymatic catalysis. This work demonstrated a diselenide-containing protein hydrogel that could efficiently self-heal up to nearly 100% without compromising their mechanical properties under visible light at room temperature.
Collapse
Affiliation(s)
- Shengda Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; (S.L.); (T.Y.)
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (J.X.); (H.S.)
| | - Shengchao Deng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; (S.D.); (X.Z.); (R.T.)
| | - Tengfei Yan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; (S.L.); (T.Y.)
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (J.X.); (H.S.)
| | - Xin Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; (S.D.); (X.Z.); (R.T.)
| | - Ruizhen Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; (S.D.); (X.Z.); (R.T.)
| | - Jiayun Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (J.X.); (H.S.)
| | - Hongcheng Sun
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (J.X.); (H.S.)
| | - Shuangjiang Yu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (J.X.); (H.S.)
| | - Junqiu Liu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (J.X.); (H.S.)
| |
Collapse
|
10
|
Birhan YS, Tsai HC. Recent developments in selenium-containing polymeric micelles: prospective stimuli, drug-release behaviors, and intrinsic anticancer activity. J Mater Chem B 2021; 9:6770-6801. [PMID: 34350452 DOI: 10.1039/d1tb01253c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenium is capable of forming a dynamic covalent bond with itself and other elements and can undergo metathesis and regeneration reactions under optimum conditions. Its dynamic nature endows selenium-containing polymers with striking sensitivity towards some environmental alterations. In the past decade, several selenium-containing polymers were synthesized and used for the preparation of oxidation-, reduction-, and radiation-responsive nanocarriers. Recently, thioredoxin reductase, sonication, and osmotic pressure triggered the cleavage of Se-Se bonds and swelling or disassembly of nanostructures. Moreover, some selenium-containing nanocarriers form oxidation products such as seleninic acids and acrylates with inherent anticancer activities. Thus, selenium-containing polymers hold promise for the fabrication of ultrasensitive and multifunctional nanocarriers of radiotherapeutic, chemotherapeutic, and immunotherapeutic significance. Herein, we discuss the most recent developments in selenium-containing polymeric micelles in light of their architecture, multiple stimuli-responsive properties, emerging immunomodulatory activities, and future perspectives in the delivery and controlled release of anticancer agents.
Collapse
Affiliation(s)
- Yihenew Simegniew Birhan
- Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia
| | | |
Collapse
|
11
|
An X, Chen C, Wang T, Huang A, Zhang D, Han MJ, Wang J. Genetic Incorporation of Selenotyrosine Significantly Improves Enzymatic Activity of Agrobacterium radiobacter Phosphotriesterase. Chembiochem 2021; 22:2535-2539. [PMID: 32789938 DOI: 10.1002/cbic.202000460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/11/2020] [Indexed: 12/16/2022]
Abstract
Tyrosine plays important roles in many enzymes. To facilitate enzyme design, mechanistic studies and minimize structural perturbation in the active site, here we report the genetic incorporation of a novel unnatural amino acid selenotyrosine (SeHF), which has single-atom replacement in comparison to tyrosine. The arPTE-(Agrobacterium radiobacter Phosphotriesterase) Tyr309SeHF mutant exhibits a significant 12-fold increase in kcat and 3.2-fold enhancement in kcat /KM at pH 7.0. Molecular dynamics simulations show that the SeHF309 mutation results in a conformational switch which opens up the product release pocket and increases the product release rate, thereby elevating the overall enzyme activity. Significant improvement of the catalytic efficiency at neutral pH by single unnatural amino acid (UAA) mutation broadens the application of this enzyme, and provides valuable insights to the mechanism. Our method represents a new approach for designing enzymes with enhanced activity.
Collapse
Affiliation(s)
- Xiaojing An
- Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Chao Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
- University of the Chinese Academy of Sciences (UCAS), Hefei, China
| | - Tianyuan Wang
- Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Aiping Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Ming-Jie Han
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Jiangyun Wang
- Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
12
|
Template-Free Self-Assembly of Two-Dimensional Polymers into Nano/Microstructured Materials. Molecules 2021; 26:molecules26113310. [PMID: 34072932 PMCID: PMC8199157 DOI: 10.3390/molecules26113310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
In the past few decades, enormous efforts have been made to synthesize covalent polymer nano/microstructured materials with specific morphologies, due to the relationship between their structures and functions. Up to now, the formation of most of these structures often requires either templates or preorganization in order to construct a specific structure before, and then the subsequent removal of previous templates to form a desired structure, on account of the lack of “self-error-correcting” properties of reversible interactions in polymers. The above processes are time-consuming and tedious. A template-free, self-assembled strategy as a “bottom-up” route to fabricate well-defined nano/microstructures remains a challenge. Herein, we introduce the recent progress in template-free, self-assembled nano/microstructures formed by covalent two-dimensional (2D) polymers, such as polymer capsules, polymer films, polymer tubes and polymer rings.
Collapse
|
13
|
Metal-Organic Framework-Based Stimuli-Responsive Polymers. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5040101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metal-organic framework (MOF) based stimuli-responsive polymers (coordination polymers) exhibit reversible phase-transition behavior and demonstrate attractive properties that are capable of altering physical and/or chemical properties upon exposure to external stimuli, including pH, temperature, ions, etc., in a dynamic fashion. Thus, their conformational change can be imitated by the adsorption/desorption of target analytes (guest molecules), temperature or pressure changes, and electromagnetic field manipulation. MOF-based stimuli responsive polymers have received great attention due to their advanced optical properties and variety of applications. Herein, we summarized some recent progress on MOF-based stimuli-responsive polymers (SRPs) classified by physical and chemical responsiveness, including temperature, pressure, electricity, pH, metal ions, gases, alcohol and multi-targets.
Collapse
|
14
|
Wang Y, Pei Z, Feng W, Pei Y. Stimuli-responsive supramolecular nano-systems based on pillar[n]arenes and their related applications. J Mater Chem B 2019; 7:7656-7675. [DOI: 10.1039/c9tb01913h] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stimuli-responsive supramolecular nano-systems (SRNS) have been a trending interdisciplinary research area due to the responsiveness upon appropriate stimuli, which makes SRNS very attractive in multiple fields where precise control is vital.
Collapse
Affiliation(s)
- Yang Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Weiwei Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| |
Collapse
|