1
|
Wang F, Zhang S, Sun F, Chen W, Liu C, Dong H, Cui B, Li L, Sun C, Du W, Liu B, Fan W, Deng J, Schmitt CA, Wang X, Du J. Anti-angiogenesis and anti-immunosuppression gene therapy through targeting COUP-TFII in an in situ glioblastoma mouse model. Cancer Gene Ther 2024; 31:1135-1150. [PMID: 38926596 DOI: 10.1038/s41417-024-00799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain cancer; angiogenesis and immunosuppression exacerbate GBM progression. COUP-TFII demonstrates pro-angiogenesis activity; however, its role in glioma progression remains unclear. This study revealed that COUP-TFII promotes angiogenesis in gliomas by inducing transdifferentiation of glioma cells into endothelial-like cells. Mechanistic investigation suggested that COUP-TFII as a transcription factor exerts its function via binding to the promoter of TXNIP. Interestingly, COUP-TFII knockdown attenuated tumorigenesis and tumor progression in an immunocompetent mouse model but promoted tumor progression in an immuno-deficient mouse model. As an explanation, repression of COUP-TFII induces cellular senescence and activates immune surveillance in glioma cells in vitro and in vivo. In addition, we used heparin-polyethyleneimine (HPEI) nanoparticles to deliver COUP-TFII shRNA, which regulated tumor angiogenesis and immunosuppression in an in situ GBM mouse model. This study provides a novel strategy and potential therapeutic targets to treat GBM.
Collapse
Affiliation(s)
- Fei Wang
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
- Medical Integration and Practice Center, Qilu Hospital of Shandong University, Shandong University, 250100, Jinan, PR China
| | - Shuo Zhang
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
- Department of Gynecology, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Fengjiao Sun
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Weiwei Chen
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Cuilan Liu
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Hongliang Dong
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Bingjie Cui
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Lingyu Li
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Chunlong Sun
- College of Biological and Environmental Engineering, Shandong University of Aeronautics, 256600, Binzhou, PR China
| | - Wen Du
- College of Biological and Environmental Engineering, Shandong University of Aeronautics, 256600, Binzhou, PR China
| | - Bin Liu
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Wanfeng Fan
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Jiong Deng
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Clemens A Schmitt
- Johannes Kepler University, Altenbergerstraße 69, 4040, Linz, Austria
- Department of Hematology and Oncology, Kepler University Hospital, Krankenhausstraße 9, 4020, Linz, Austria
- Medical Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
- Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner Site, Berlin, Germany
| | - Xiuwen Wang
- Medical Integration and Practice Center, Qilu Hospital of Shandong University, Shandong University, 250100, Jinan, PR China.
| | - Jing Du
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China.
- Department of Gynecology, Binzhou Medical University Hospital, 256600, Binzhou, PR China.
| |
Collapse
|
2
|
Li C, Xu Q, Meng X, Duo X, Feng Y. Amphiphilic multi-targeting copolymer micelles efficiently deliver pZNF580 to promote endothelial cell proliferation and migration. J Mater Chem B 2024; 12:2843-2854. [PMID: 38412450 DOI: 10.1039/d3tb02849f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Cationic copolymers are widely used in gene delivery as a non-viral gene vector, but their applications are limited by low transfection efficiency and high cytotoxicity. In order to enhance the transfection efficiency of copolymer micelles to endothelial cells (HUVECs) and reduce their cytotoxicity, this study synthesized an amphipathic multi-targeted copolymer micelle delivery system PCLMD-PPEGMA-NLS-TAT-REDV (TCMs). Gel test results showed that TCMs showed good pZNF580 binding ability and could effectively load the pZNF580 plasmid. The CCK-8 results show that when the concentration of TCMs is greater than 60 μg mL-1, it will affect cell viability and have low cytotoxicity. We found that the multi-targeted copolymer micelles can be effectively taken up by HUVECs in vitro. The transfection efficiency of TCMs@pZNF580 (w/wpZNF580 = 3) to HUVECs was comparable to that of the positive control group lip2000@pZNF580, and WB also showed the same trend. In addition, the TCMs@pZNF580 complex also significantly enhanced the proliferation and migration of HUVECs. The experimental results on blood vessel formation showed that TCMs@pZNF580 accelerated the vascularization of HUVECs. This experiment provided a new technology platform for targeted gene therapy, especially for endothelialization and vascularization. The research results have important reference value for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Chen Li
- School of Chemistry and Chemical Engineering, Qinghai University for Nationalities, Xining, Qinghai 810007, P. R. China.
- Key Laboratory of National Ethnic Affairs Commission of Resource Chemistry and Ecological Environment Protection on Qinghai-Tibet Plateau, Xining, Qinghai 810007, P. R. China
| | - Qirong Xu
- School of Chemistry and Chemical Engineering, Qinghai University for Nationalities, Xining, Qinghai 810007, P. R. China.
- Key Laboratory of National Ethnic Affairs Commission of Resource Chemistry and Ecological Environment Protection on Qinghai-Tibet Plateau, Xining, Qinghai 810007, P. R. China
| | - Xiangyan Meng
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, P. R. China
| | - Xinghong Duo
- School of Chemistry and Chemical Engineering, Qinghai University for Nationalities, Xining, Qinghai 810007, P. R. China.
- Key Laboratory of National Ethnic Affairs Commission of Resource Chemistry and Ecological Environment Protection on Qinghai-Tibet Plateau, Xining, Qinghai 810007, P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
3
|
Kumar R, Sinha NR, Mohan RR. Corneal gene therapy: Structural and mechanistic understanding. Ocul Surf 2023; 29:279-297. [PMID: 37244594 PMCID: PMC11926995 DOI: 10.1016/j.jtos.2023.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Cornea, a dome-shaped and transparent front part of the eye, affords 2/3rd refraction and barrier functions. Globally, corneal diseases are the leading cause of vision impairment. Loss of corneal function including opacification involve the complex crosstalk and perturbation between a variety of cytokines, chemokines and growth factors generated by corneal keratocytes, epithelial cells, lacrimal tissues, nerves, and immune cells. Conventional small-molecule drugs can treat mild-to-moderate traumatic corneal pathology but requires frequent application and often fails to treat severe pathologies. The corneal transplant surgery is a standard of care to restore vision in patients. However, declining availability and rising demand of donor corneas are major concerns to maintain ophthalmic care. Thus, the development of efficient and safe nonsurgical methods to cure corneal disorders and restore vision in vivo is highly desired. Gene-based therapy has huge potential to cure corneal blindness. To achieve a nonimmunogenic, safe and sustained therapeutic response, the selection of a relevant genes, gene editing methods and suitable delivery vectors are vital. This article describes corneal structural and functional features, mechanistic understanding of gene therapy vectors, gene editing methods, gene delivery tools, and status of gene therapy for treating corneal disorders, diseases, and genetic dystrophies.
Collapse
Affiliation(s)
- Rajnish Kumar
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow campus, UP, 226028, India
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
4
|
Zhu M, Wang X, Xie R, Wang Y, Xu X, Burger J, Gong S. Guanidinium-Rich Lipopeptide-Based Nanoparticle Enables Efficient Gene Editing in Skeletal Muscles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10464-10476. [PMID: 36800641 DOI: 10.1021/acsami.2c21683] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Genome editing mediated by the CRISPR-Cas system holds great promise for the treatment of genetic diseases. However, safe and efficient in vivo delivery of CRISPR genome editing machinery remains a challenge. Here, we report a lipopeptide-based nanoparticle (LNP) that can efficiently deliver the CRISPR Cas9/sgRNA ribonucleoprotein (RNP) and enable efficient genome editing both in vitro and in vivo. An artificial lipopeptide, GD-LP, was constructed by linking a hydrophilic guanidinium-rich head to an oleic acid-based hydrophobic tail via a disulfide bond. LNP formed by the self-assembly of GD-LP can easily form a complex with RNP with a loading content of up to 20 wt %. The resulting RNP-LNP nanocomplex led to 72.6% gene editing efficiency in GFP-HEK cells with negligible cytotoxicity. The LNP also showed significantly higher transfection efficiencies than Lipofectamine 2000 for the delivery of mRNA in NIH 3T3 and RAW 264.7 and the delivery of plasmid DNA in B78 cells. In vivo studies showed that intramuscular injection of the RNP-LNP nanocomplex in Ai14 mice induced efficient gene editing in muscular tissues. Moreover, the delivery of Cas9 RNP and donor DNA by LNP (i.e., RNP/ssODN-LNP nanocomplex) restored dystrophin expression, reduced skeletal muscle fibrosis, and significantly improved muscle strength in a Duchenne muscular dystrophy (DMD) mouse model.
Collapse
Affiliation(s)
- Min Zhu
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Xiuxiu Wang
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Ruosen Xie
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Yuyuan Wang
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Xianghui Xu
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jacobus Burger
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Shaoqin Gong
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
5
|
Mohamed MA, Yan L, Shahini A, Rajabian N, Jafari A, Andreadis ST, Wu Y, Cheng C. Well-Defined pH-Responsive Self-Assembled Block Copolymers for the Effective Codelivery of Doxorubicin and Antisense Oligonucleotide to Breast Cancer Cells. ACS APPLIED BIO MATERIALS 2022; 5:4779-4792. [PMID: 36170623 DOI: 10.1021/acsabm.2c00464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The worldwide steady increase in the number of cancer patients motivates the development of innovative drug delivery systems for combination therapy as an effective clinical modality for cancer treatment. Here, we explored a design concept based on poly(ethylene glycol)-b-poly(2-(dimethylamino)ethyl methacrylate)-b-poly(2-hydroxyethyl methacrylate-formylbenzoic acid) [PEG-b-PDMAEMA-b-P(HEMA-FBA)] for the dual delivery of doxorubicin (DOX) and GTI2040 (an antisense oligonucleotide for ribonucleotide reductase inhibition) to MCF-7 breast cancer cells. PEG-b-PDMAEMA-b-PHEMA, the precursor copolymer, was prepared through chain extensions from a PEG-based macroinitiator via two consecutive atom transfer radical polymerization (ATRP) steps. Then, it was modified at the PHEMA block with 4-formylbenzoic acid (FBA) to install reactive aldehyde moieties. A pH-responsive polymer-drug conjugate (PDC) was obtained by conjugating DOX to the polymer structure via acid-labile imine linkages, and subsequently self-assembled in an aqueous solution to form DOX-loaded self-assembled nanoparticles (DOX-SAN) with a positively charged shell. DOX-SAN condensed readily with negatively charged GTI2040 to form GTI2040/DOX-SAN nanocomplexes. Gel-retardation assay confirmed the affinity between GTI2040 and DOX-SAN. The GTI2040/DOX-SAN nanocomplex at N/P ratio of 30 exhibited a volume-average hydrodynamic size of 136.4 nm and a zeta potential of 21.0 mV. The pH-sensitivity of DOX-SAN was confirmed by the DOX release study based on the significant cumulative DOX release at pH 5.5 relative to pH 7.4. Cellular uptake study demonstrated favorable accumulation of GTI2040/DOX-SAN inside MCF-7 cells compared with free GTI2040/DOX. In vitro cytotoxicity study indicated higher therapeutic efficacy of GTI2040/DOX-SAN relative to DOX-SAN alone because of the downregulation of the R2 protein of ribonucleotide reductase. These outcomes suggest that the self-assembled pH-responsive triblock copolymer is a promising platform for combination therapy, which may be more effective in combating cancer than individual therapies.
Collapse
Affiliation(s)
- Mohamed Alaa Mohamed
- Department of Chemical and Biological Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260, United States.,Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Lingyue Yan
- Department of Biomedical Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260, United States
| | - Aref Shahini
- Department of Chemical and Biological Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260, United States
| | - Nika Rajabian
- Department of Chemical and Biological Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260, United States
| | - Amin Jafari
- Department of Chemical and Biological Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260, United States
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260, United States.,Department of Biomedical Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260, United States.,Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York 14263, United States.,Cell, Gene and Tissue Engineering (CGTE) Center, Buffalo, New York 14263, United States
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260, United States.,Cell, Gene and Tissue Engineering (CGTE) Center, Buffalo, New York 14263, United States
| | - Chong Cheng
- Department of Chemical and Biological Engineering, University at Buffalo, the State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
6
|
Wang Z, Song W, Sheng R, Guo X, Hao L, Zhang X. Controlled preparation of cholesterol-bearing polycations with pendent l-lysine for efficient gene delivery. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2058943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zhao Wang
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing, China
| | - Wenli Song
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing, China
| | - Ruilong Sheng
- CQM-Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyu Guo
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing, China
| | - Lingyun Hao
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing, China
| | - Xiaojuan Zhang
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing, China
| |
Collapse
|
7
|
Zhang R, Nie T, Fang Y, Huang H, Wu J. Poly(disulfide)s: From Synthesis to Drug Delivery. Biomacromolecules 2021; 23:1-19. [PMID: 34874705 DOI: 10.1021/acs.biomac.1c01210] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bioresponsive polymers have been widely used in drug delivery because of their degradability. For example, poly(disulfide)s with repeating disulfide bonds in the main chain have attracted considerable research attention. The characteristics of the disulfide bonds, including their dynamic and reversible properties and their responsiveness to stimuli such as reductants, light, heat, and mechanical force, make them ideal platforms for on-demand drug delivery. This review introduces the synthesis methods and applications of poly(disulfide)s. Furthermore, the synthesis methods of poly(disulfide)s are classified on the basis of the monomers used: oxidative step-growth polymerization with dithiols, ring-opening polymerization with cyclic disulfides, and polymerization with linear disulfides. In addition, recent advances in poly(disulfide)s for the delivery of small-molecule or biomacromolecular drugs are discussed. Quantum-dot-loaded poly(disulfide) delivery systems for imaging are also included. This review provides an overview of the various design strategies employed in the construction of poly(disulfide) platforms to inspire new applications in the field of drug delivery.
Collapse
Affiliation(s)
- Ruhe Zhang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Tianqi Nie
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yifen Fang
- Department of Cardiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
8
|
Stimuli-Responsive Polymeric Nanosystems for Controlled Drug Delivery. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biocompatible nanosystems based on polymeric materials are promising drug delivery nanocarrier candidates for antitumor therapy. However, the efficacy is unsatisfying due to nonspecific accumulation and drug release of the nanoparticles in normal tissue. Recently, the nanosystems that can be triggered by tumor-specific stimuli have drawn great interest for drug delivery applications due to their controllable drug release properties. In this review, various polymers and external stimuli that can be employed to develop stimuli-responsive polymeric nanosystems are discussed, and finally, we delineate the challenges in designing this kind of Nanomedicine to improve the therapeutic efficacy.
Collapse
|
9
|
Hui E, Sumey JL, Caliari SR. Click-functionalized hydrogel design for mechanobiology investigations. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2021; 6:670-707. [PMID: 36338897 PMCID: PMC9631920 DOI: 10.1039/d1me00049g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The advancement of click-functionalized hydrogels in recent years has coincided with rapid growth in the fields of mechanobiology, tissue engineering, and regenerative medicine. Click chemistries represent a group of reactions that possess high reactivity and specificity, are cytocompatible, and generally proceed under physiologic conditions. Most notably, the high level of tunability afforded by these reactions enables the design of user-controlled and tissue-mimicking hydrogels in which the influence of important physical and biochemical cues on normal and aberrant cellular behaviors can be independently assessed. Several critical tissue properties, including stiffness, viscoelasticity, and biomolecule presentation, are known to regulate cell mechanobiology in the context of development, wound repair, and disease. However, many questions still remain about how the individual and combined effects of these instructive properties regulate the cellular and molecular mechanisms governing physiologic and pathologic processes. In this review, we discuss several click chemistries that have been adopted to design dynamic and instructive hydrogels for mechanobiology investigations. We also chart a path forward for how click hydrogels can help reveal important insights about complex tissue microenvironments.
Collapse
Affiliation(s)
- Erica Hui
- Department of Chemical Engineering, University of Virginia, 102 Engineer's Way, Charlottesville, Virginia 22904, USA
| | - Jenna L Sumey
- Department of Chemical Engineering, University of Virginia, 102 Engineer's Way, Charlottesville, Virginia 22904, USA
| | - Steven R Caliari
- Department of Chemical Engineering, University of Virginia, 102 Engineer's Way, Charlottesville, Virginia 22904, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
| |
Collapse
|
10
|
Sharma D, Arora S, Singh J, Layek B. A review of the tortuous path of nonviral gene delivery and recent progress. Int J Biol Macromol 2021; 183:2055-2073. [PMID: 34087309 PMCID: PMC8266766 DOI: 10.1016/j.ijbiomac.2021.05.192] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Gene therapy encompasses the transfer of exogenous genetic materials into the patient's target cells to treat or prevent diseases. Nevertheless, the transfer of genetic material into desired cells is challenging and often requires specialized tools or delivery systems. For the past 40 years, scientists are mainly pursuing various viruses as gene delivery vectors, and the overall progress has been slow and far from the expectation. As an alternative, nonviral vectors have gained substantial attention due to their several advantages, including superior safety profile, enhanced payload capacity, and stealth abilities. Since nonviral vectors encounter multiple extra- and intra-cellular barriers limiting the transfer of genetic payload into the target cell nucleus, we have discussed these barriers in detail for this review. A direct approach, utilizing physical methods like electroporation, sonoporation, gene gun, eliminate the requirement for a specific carrier for gene delivery. In contrast, chemical methods of gene transfer exploit natural or synthetic compounds as carriers to increase cellular targeting and gene therapy effectiveness. We have also emphasized the recent advancements aimed at enhancing the current nonviral approaches. Therefore, in this review, we have focused on discussing the current evolving state of nonviral gene delivery systems and their future perspectives.
Collapse
Affiliation(s)
- Divya Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Sanjay Arora
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA.
| |
Collapse
|
11
|
Muhammad K, Zhao J, Gao B, Feng Y. Polymeric nano-carriers for on-demand delivery of genes via specific responses to stimuli. J Mater Chem B 2021; 8:9621-9641. [PMID: 32955058 DOI: 10.1039/d0tb01675f] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polymeric nano-carriers have been developed as a most capable and feasible technology platform for gene therapy. As vehicles, polymeric nano-carriers are obliged to possess high gene loading capability, low immunogenicity, safety, and the ability to transfer various genetic materials into specific sites of target cells to express therapeutic proteins or block a process of gene expression. To this end, various types of polymeric nano-carriers have been prepared to release genes in response to stimuli such as pH, redox, enzymes, light and temperature. These stimulus-responsive nano-carriers exhibit high gene transfection efficiency and low cytotoxicity. In particular, dual- and multi-stimulus-responsive polymeric nano-carriers can respond to a combination of signals. Markedly, these combined responses take place either simultaneously or in a sequential manner. These dual-stimulus-responsive polymeric nano-carriers can control gene delivery with high gene transfection both in vitro and in vivo. In this review paper, we highlight the recent exciting developments in stimulus-responsive polymeric nano-carriers for gene delivery applications.
Collapse
Affiliation(s)
- Khan Muhammad
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
| | - Jing Zhao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
| | - Bin Gao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China. and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, P. R. China
| |
Collapse
|
12
|
Esrafili A, Wagner A, Inamdar S, Acharya AP. Covalent Organic Frameworks for Biomedical Applications. Adv Healthc Mater 2021; 10:e2002090. [PMID: 33475260 DOI: 10.1002/adhm.202002090] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/23/2020] [Indexed: 12/15/2022]
Abstract
Covalent organic frameworks (COFs) are porous organic polymeric materials that are composed of organic elements and linked together by the thermodynamically stable covalent bonds. The applications of COFs in energy sector and drug delivery are afforded because of the desirable properties of COFs, such as high stability, low density, large surface area, multidimensionality, porosity, and high-ordered crystalline structure expanded. In this review COFs are reviewed, from the perspective of different types of reported COFs, different methods for their synthesis, and their potential applications in the biomedical field. The main goal of this review is to introduce COFs as a biomaterial and to identify specific advantages of different types of COFs that can be exploited for specialized biomedical applications, such as immune engineering.
Collapse
Affiliation(s)
- Arezoo Esrafili
- Chemical Engineering School for the Engineering of Matter, Transport, and Energy Arizona State University Tempe AZ 85281 USA
| | - Avery Wagner
- Chemical Engineering School for the Engineering of Matter, Transport, and Energy Arizona State University Tempe AZ 85281 USA
| | - Sahil Inamdar
- Chemical Engineering School for the Engineering of Matter, Transport, and Energy Arizona State University Tempe AZ 85281 USA
| | - Abhinav P. Acharya
- Chemical Engineering School for the Engineering of Matter, Transport, and Energy Arizona State University Tempe AZ 85281 USA
- Biological Design Graduate Program School for Biological and Health Systems Engineering Arizona State University Tempe AZ 85281 USA
- Materials Science and Engineering School for the Engineering of Matter Transport and Energy Arizona State University Tempe AZ 85281 USA
- Biodesign Center for Immunotherapy Vaccines and Virotherapy Arizona State University Tempe AZ 85281 USA
| |
Collapse
|
13
|
Ullah I, Zhao J, Su B, Rukh S, Guo J, Ren XK, Xia S, Zhang W, Feng Y. Redox stimulus disulfide conjugated polyethyleneimine as a shuttle for gene transfer. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:118. [PMID: 33247778 DOI: 10.1007/s10856-020-06457-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Redox-responsive cationic polymers have gained considerable attention in gene delivery due to low cytotoxicity and spatio-temporal release of DNA into the cells. Here, we reported the synthesis of reducible disulfide conjugated polyethyleneimine (1.8 kDa) (denoted as SS-PEI) and its application to transfer pEGFP-ZNF580 plasmid (pZNF580) into EA.hy926 cell. This reducible SS-PEI polymer was prepared by one-step polycondensation reaction of low molecular weight PEI with bis-(p-nitrophenyl)-3,3'-dithiodipropionate. The SS-PEI successfully condensed pZNF580 into nano-sized complexes (170 ± 1.5 nm to 255 ± 1.6 nm) with zeta potentials of 3 ± 0.4 mV to 17 ± 0.9 mV. The complexes could be triggered to release pZNF580 when exposed to the reducing environment of 5 mM dithiothreitol. Besides, the SS-PEI exhibited low cytotoxicity. In vitro transfection results showed that SS-PEI exhibited good transfection efficiency comparable to PEI25kDa. Thus, the SS-PEI could act as an reducible gene carrier with good transfection efficiency and low cytotoxicity.
Collapse
Affiliation(s)
- Ihsan Ullah
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, China
| | - Jing Zhao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, China
| | - Bin Su
- Department of Clinical Research, Characteristic Medical Center of Chinese People's Armed Police Force, 220 Chenglin Road, Tianjin, 300162, China
| | - Shah Rukh
- Department of Chemistry, School of Science, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, China
- Collaborative Innovation Centre of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, China
- Collaborative Innovation Centre of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, Chenglin Road 220, Tianjin, 300162, China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of People's Armed Police Force, Tianjin, 300309, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, China.
- Department of Clinical Research, Characteristic Medical Center of Chinese People's Armed Police Force, 220 Chenglin Road, Tianjin, 300162, China.
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin, 300072, China.
| |
Collapse
|
14
|
Muhammad K, Zhou J, Ullah I, Zhao J, Muhammad A, Xia S, Zhang W, Feng Y. Bioreducible cationic random copolymer for gene delivery. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Khan Muhammad
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Jiaying Zhou
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Ihsan Ullah
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Jing Zhao
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Ayaz Muhammad
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine Affiliated Hospital LogisticsUniversity of People's Armed Police Force Tianjin China
| | - Wencheng Zhang
- Department of Physiology and PathophysiologyLogistics University of People's Armed Police Force Tianjin China
| | - Yakai Feng
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
- Chemical EngineeringCollaborative Innovation Center of Chemical Science Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education)Tianjin University Tianjin China
| |
Collapse
|