1
|
Li S, Wang Q, Jia Z, Da M, Zhao J, Yang R, Chen D. Recent advances in glucose oxidase-based nanocarriers for tumor targeting therapy. Heliyon 2023; 9:e20407. [PMID: 37780773 PMCID: PMC10539972 DOI: 10.1016/j.heliyon.2023.e20407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023] Open
Abstract
Glucose oxidase (GOx) can specifically catalyze the conversion of β-d-glucose into gluconic acid and hydrogen peroxide (H2O2) in the presence of oxygen, making it promising for tumor starvation therapy and oxidative therapy. However, GOx's immunogenicity, poor in vivo stability, short half-life, and potential systemic toxicity, limit its application in cancer therapy. Nanocarriers are capable of improving the pharmacological properties of therapeutic drugs (e.g. stability, circulating half-life, and tumor accumulation) and lower toxicity, hence resolving GOx issues and enhancing its efficacy. Although the application of targeted nanocarriers based on GOx has recently flourished, this field has not yet been reviewed and evaluated. Herein, we initially examined the mechanism of GOx-based nanocarriers for enhanced tumor therapy. Also, we present a comprehensive and up-to-date review that highlights GOx-based nanocarriers for tumor targeting therapy. This review expands on GOx-based nano-targeted combination therapies from both passive and active targeting perspectives, meanwhile, active targeting is further classified into ligand-mediated targeting and physical-mediated targeting. Furthermore, this review also emphasizes the present challenges and promising advancements.
Collapse
Affiliation(s)
- Su Li
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Qinghua Wang
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, 214002, China
| | - Zhen Jia
- Department of Obstetrics and Gynecology, Haidong No. 2 People's Hospital, Haidong, 810699, China
| | - Mengting Da
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University, Xining, 810001, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University, Xining, 810001, China
| | - Rui Yang
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Daozhen Chen
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Hospital of Nanjing Medical University, Wuxi, 214002, China
- Department of Obstetrics and Gynecology, Haidong No. 2 People's Hospital, Haidong, 810699, China
| |
Collapse
|
2
|
Anti-cancer Nanotechnology. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
3
|
Yeung CLS, Yam JWP. Therapy-induced modulation of extracellular vesicles in hepatocellular carcinoma. Semin Cancer Biol 2022; 86:1088-1101. [PMID: 35158067 DOI: 10.1016/j.semcancer.2022.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023]
Abstract
Despite rapid development of anti-tumorigenic treatments, the clinical outcome for hepatocellular carcinoma (HCC) is still far from satisfactory. With a deeper understanding about tumor microenvironment (TME), the critical role of extracellular vesicles (EVs) as intercellular liaison has come into spotlight. The dynamic functionality of these nanoparticles revealed cancer cells can employ both tumor and non-tumorous components for their own benefit, so as to mediate cell-to-cell communication and interchange of oncogenic biomolecules. Increasing studies on HCC-derived EVs have identified various irregulated biomolecules, that may serve as biomarkers or therapeutic targets. In this review, we first introduce the current knowledge about EVs and how they operate to maintain a healthy liver microenvironment. We then summarize some of the aberrant observations reported on HCC-derived EVs and how they contribute to HCC pathogenesis. Finally, we describe how current treatments for HCC alter behavior of EVs, which may shed light for potential prognostic markers and therapeutic strategies.
Collapse
Affiliation(s)
- Cherlie Lot Sum Yeung
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Judy Wai Ping Yam
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong.
| |
Collapse
|
4
|
Wang Y, Yi Y, Yao J, Wan H, Yu M, Ge L, Zeng X, Wu M, Mei L. Isoginkgetin Synergizes with Doxorubicin for Robust Co-delivery to Induce Autophagic Cell Death in Hepatocellular Carcinoma. Acta Biomater 2022; 153:518-528. [PMID: 36152910 DOI: 10.1016/j.actbio.2022.09.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/28/2022] [Accepted: 09/15/2022] [Indexed: 11/01/2022]
Abstract
Doxorubicin (DOX) widely used in hepatocellular carcinoma (HCC) can induce serious side effects and drug resistance. Herein, we aimed to seek a strategy to improve the efficacy and reduce the side effects of DOX in HCC based on an autophagy inducer drug called isoginkgetin (ISO). The design of multifunctional nanocarriers based on hyaluronic acid-conjugated and manganese-doped mesoporous silica nanoparticles (HM) for the co-delivery of antitumor drugs against HCC provided an effective and promising antitumor strategy. Our results showed that HM@ISO@DOX could efficiently inhibit HCC cell proliferation through activating autophagy through AMPKa-ULK1 pathway. Moreover, intravenous injection of HM@ISO@DOX significantly suppressed HCC tumor progression in nude mouse HCC model. Collectively, our findings revealed an anti-HCC mechanism of HM@ISO@DOX through autophagy and provide an effective therapeutic strategy for HCC. STATEMENT OF SIGNIFICANCE: In our study, we constructed a co-delivery system by loading ISO and DOX in the mesoporous channels of manganese-doped mesoporous silica nanoparticles, which could be further conjugated with hyaluronic acid to obtain HM@ISO@DOX. The nanocarriers had been demonstrated to be biodegradable under the acidic and reducing tumor microenvironment, as well as to possess the tumor targeting capability via the conjugated hyaluronic acid. In addition, HM@ISO@DOX enhanced the therapeutic efficacy against human HCC tumor through the combinatorial therapies of chemotherapeutics, Mn2+-mediated chemodynamic therapeutics and autophagic cell death, which might be achieved through AMPK-ULK1 signaling. This work revealed that such a nanomedicine exhibited superior tumor accumulation and antitumor efficiency against HCC with extremely low systemic toxicity in an autophagy-boosted manner.
Collapse
Affiliation(s)
- Yang Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; Central Laboratory of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
| | - Yunfei Yi
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jie Yao
- Central Laboratory of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
| | - Haoqiang Wan
- Central Laboratory of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
| | - Mian Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Lanlan Ge
- Central Laboratory of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
| | - Xiaobin Zeng
- Central Laboratory of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China.
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Lin Mei
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
5
|
Mohapatra P, Chandrasekaran N. Wnt/β-catenin targeting in liver carcinoma through nanotechnology-based drug repurposing: A review. Biomed Pharmacother 2022; 155:113713. [PMID: 36126453 DOI: 10.1016/j.biopha.2022.113713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Liver cancer is the fifth most widespread in the world, with a high fatality rate and poor prognosis.However,surgicalresction,thermal/radiofrequencyablation,chemo/radioembolization and pathway targeting to the cancer cells are all possible options for treating Liver Carcinoma. Unfortunately, once the tumour has developed and spread, diagnosis often occurs too late. The targeted therapy has demonstrated notable, albeit modest, efficacy in some patients with advanced HCC. This demonstrates the necessity of creating additional focused treatments and, in pursuit of this end, the need to find ever-more pathways as prospective targets. Despite the critical need, there are currently no Wnt signalling directed therapy on the research field, only a few methods have progressed beyond the early stage of clinical studies. In the present study, we report that repurposing of drug previously licensed for other diseases is one possible strategy inhibit malignant cell proliferation and renewal by removing individuals protein expression in the Wnt/β-catenin pathway. Particularly β-catenin complex is present in Liver cancer, where tumour necrosis factor is indispensable for the complex formation and β-catenin interactions are disrupted upon drug in nano-carrier through nanotechnology. This study findings not only highlight that repurposing drug could improve liver cancer treatment outcomes but also focused to character traits and functions of the Wnt signalling cascade's molecular targets and how they could be used to get anti-tumour results method to targeting Wnt/β-catenin in liver carcinoma.
Collapse
|
6
|
Chen X, Liu T, Yuan P, Chang X, Yin Q, Mu W, Peng Z. Anti-cancer Nanotechnology. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_11-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
7
|
Liu G, Wang M, He H, Li J. Doxorubicin-Loaded Tumor-Targeting Peptide-Decorated Polypeptide Nanoparticles for Treating Primary Orthotopic Colon Cancer. Front Pharmacol 2021; 12:744811. [PMID: 34721033 PMCID: PMC8554036 DOI: 10.3389/fphar.2021.744811] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/15/2021] [Indexed: 11/22/2022] Open
Abstract
Colorectal cancer is the third most common malignant disease worldwide, and chemotherapy has been the standard treatment for colorectal cancer. However, the therapeutic effects of chemotherapy are unsatisfactory for advanced and recurrent colorectal cancers. Thus, increasing the treatment efficacy of chemotherapy in colorectal cancer is a must. In this study, doxorubicin (DOX)-loaded tumor-targeting peptide-decorated mPEG-P(Phe-co-Cys) nanoparticles were developed to treat orthotopic colon cancer in mice. The peptide VATANST (STP) can specifically bind with vimentin highly expressed on the surface of colon cancer cells, thus achieving the tumor-targeting effects. The nanoparticles are core-shell structured, which can protect the loaded DOX while passing through the blood flow and increase the circulation time. The disulfide bonds within the nanoparticles are sensitive to the glutathione-rich microenvironment of tumor tissues. Rupture of disulfide bonds of the nanoparticles leads to the continuous release of DOX, thus resulting in the apoptosis of the tumor cells. The in vivo experiments in mice with orthotopic colon cancer demonstrated that the synthesized DOX-loaded tumor-targeting peptide-decorated polypeptide nanoparticles showed properties of drug delivery systems and exhibited good antitumor properties. The synthesized nanoparticles show appropriate properties as one of the drug delivery systems and exhibit good antitumor properties after encapsulating DOX.
Collapse
Affiliation(s)
- Guoliang Liu
- Operating Theater and Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Min Wang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hongyu He
- Operating Theater and Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Lv W, Cao M, Liu J, Hei Y, Bai J. Tumor microenvironment-responsive nanozymes achieve photothermal-enhanced multiple catalysis against tumor hypoxia. Acta Biomater 2021; 135:617-627. [PMID: 34407474 DOI: 10.1016/j.actbio.2021.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022]
Abstract
Reactive oxygen species (ROS)-mediated antitumor modalities that induced oxidative damage of cancer cells have recently acquired increasing attention on account of their noninvasiveness, low systemic toxicity, and high specificity. However, their clinical efficacy was often constrained by complex and various tumor microenvironment (TME), especially hypoxia characteristic and antioxidation effect of glutathione (GSH). Herein, we constructed a multinanozyme system based on hyaluronic acid (HA)-stabilized CuMnOx nanoparticles (CMOH) loaded with indocyanine green (ICG) with high-efficient ROS generation, O2 self-evolving function, GSH depletion ability and hyperthermia effect for achieving hypoxic tumor therapy. The CMOH nanozymes exhibited peroxidase-like and oxidase-like activities, which could efficiently catalyze H2O2 or O2 to generate hydroxyl radicals (•OH) or superoxide radicals (•O2-) in acidic tumor microenvironment (TME), elevating oxidative stress of tumor. Indocyanine green (ICG) was further loaded into HA-CuMnOx to form HA-CuMnOx@ICG nanocomposites (CMOI NCs), which can effectively generate singlet oxygen (1O2) and local hyperthermia under light irradiation. The hyperthermia generated by CMOI NCs further enhances the catalytic activities of nanozymes for ROS generation. Meanwhile, the CMOI with catalase-like activity could catalyze H2O2 into O2 for relieving tumor hypoxia and elevate O2-dependent ROS generation. Notably, CMOI can consume endogenous GSH, thereby impairing tumor antioxidant system and enhancing ROS-based therapy efficacy. After modified with HA, CMOI NCs with tumor targeting ability realized synergistic PTT-enhanced tumor oxidation therapy based on their multimodal properties. Thus, this work contributes to design high-performance therapeutic reagent to overcome the limitation of hypoxia and high antioxidant defense of tumor. STATEMENT OF SIGNIFICANCE: Reactive oxygen species (ROS)-mediated antitumor modalities were often constrained by complex and various tumor microenvironment (TME), especially hypoxia characteristic and antioxidation effect of glutathione (GSH). In this work, a multinanozyme system based on hyaluronic acid (HA)-stabilized CuMnOx nanoparticles (CMOH) loaded with indocyanine green (ICG) was designed to realize PTT-enhanced multiple catalysis tumor therapy. Although antitumor modalities based on multienzyme catalysis have been developed. Here, we highlighted the responsive catalysis of multienzyme system on tumor microenvironment (TME) and the promoting effect of photothermal effect on ROS production. Both in vitro and in vivo manifested that the enhanced anticancer efficacy of CMOI NCs due to their thermally amplified catalytic activity and TME regulation ability.
Collapse
|
9
|
Munjal T, Dutta S. Biocompatible nanoreactors of catalase and nanozymes for anticancer therapeutics. NANO SELECT 2021. [DOI: 10.1002/nano.202100040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Tanya Munjal
- Biological & Molecular Science Laboratory Amity Institute of Click Chemistry Research & Studies Amity University Noida Uttar Pradesh India
| | - Saikat Dutta
- Biological & Molecular Science Laboratory Amity Institute of Click Chemistry Research & Studies Amity University Noida Uttar Pradesh India
| |
Collapse
|
10
|
Qiu R, Sun D, Bai Y, Li J, Wang L. Application of tumor-targeting peptide-decorated polypeptide nanoparticles with doxorubicin to treat osteosarcoma. Drug Deliv 2021; 27:1704-1717. [PMID: 33305647 PMCID: PMC7733905 DOI: 10.1080/10717544.2020.1856221] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor in childhood and adolescence. Currently, surgery combined with chemotherapy is the main treatment for osteosarcoma. However, the long-term survival of patients with metastatic osteosarcoma is unsatisfactory. Therefore, new treatment methods to improve the prognosis of patients with osteosarcoma are required. The present study aimed to develop nanocarriers with both tumor targeting and reduction responsiveness abilities, and to improve the therapeutic effect and reduce toxicity by loading traditional small molecule antitumor drugs. The tumor targeting peptide-decorated, doxorubicin (DOX)-loaded mPEG-P(Phe-co-Cys) nanoparticles were developed successfully through the ring-opening polymerization of amino acids. The peptide VATANST (STP) can specifically bind with vimentin, which is highly expressed on the osteosarcoma cell surface, resulting in tumor targeting effects. The nanoparticle is core–shell structured to protect the loaded DOX during blood flow. The disulfide bonds within the nanoparticles are sensitive to the osteosarcoma microenvironment, which has high glutathione (GSH) levels. Under the enhanced permeability and retention and active tumor targeting effects, the STP-decorated DOX-loaded nanoparticles accumulated in tumor tissues. High GSH levels can rupture disulfide bonds, resulting in the controlled release of DOX, which will cause necrosis of tumor cells. The characteristics of the synthesized nanoparticles, DOX release profiles in vitro and in vivo, cytotoxicity analysis, animal study, and safety evaluation were performed. The nanoparticles could increase the tumor inhibition efficiency against osteosarcoma and reduce the side effects of DOX to major organs. The STP-decorated mPEG-P(Phe-co-Cys) nanoparticles might be a suitable drug delivery system for DOX to treat osteosarcoma.
Collapse
Affiliation(s)
- Renna Qiu
- Department of Physical Examination Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Denghua Sun
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuzhuo Bai
- Breast and Thyroid Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Lizhe Wang
- Department of Pediatric Oncology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Guo X, Zhu M, Yuan P, Liu T, Tian R, Bai Y, Zhang Y, Chen X. The facile formation of hierarchical mesoporous silica nanocarriers for tumor-selective multimodal theranostics. Biomater Sci 2021; 9:5237-5246. [PMID: 34223579 DOI: 10.1039/d1bm00564b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The combination of therapeutic and diagnostic functions in a single platform has aroused great interest due to the more optimal synergistic effects that can be obtained as compared to any single theranostic approach alone. However, current nanotheranostics are normally formed via complicated construction steps involving the pre-synthesis of each component and further conjugation via chemical bonds, which may cause low integration efficiency and limit production and applications. Herein, a tumor-targeting and tumor-responsive all-in-one nanoplatform based on mesoporous silica nanocarriers (MSNs) was fabricated via a facile approach utilizing efficient and nondestructive physical interactions for long-wavelength fluorescence imaging-guided synergistic chemo-catalytic-photothermal tumor therapy. The MSNs were endowed with these multimodal theranostics via a simple hydrothermal method after coordinating with Fe2+ and glutathione (GSH) to introduce ferroferric oxide and carbon dots in situ. The former acts as a photothermal agent and catalytic agent to generate local heat under 808 nm irradiation and also when toxic hydroxyl radicals (˙OH) are in contact with abundant hydrogen peroxide in cancer cells, while the latter participates in fluorescence imaging. After loading with paclitaxel (PTX), polyester and folic-acid-conjugated cyclodextrin were employed to serve as an esterase-sensitive gatekeeper controlling PTX release from the MSN pores and as a tumor-targeting agent for accurate therapy, respectively. As expected, the nanoplatform was efficiently taken up by tumor cells over healthy cells, and then, synergetic chemo-catalytic-photothermal therapy was performed, resulting in 5-fold greater apoptosis of tumor cells as compared to healthy cells under 808 nm irradiation. Moreover, in vivo data from tumor-bearing mouse models showed that tumors were significantly inhibited, and the survival rates of these mice increased to greater than 80% after 5 weeks of treatment with our nanoplatform. These therapeutic processes could be directly tracked via fluorescence imaging enabled by carbon dots and, therefore, our nanoplatform provides a promising theranostics approach for tumor treatment.
Collapse
Affiliation(s)
- Xiaoyan Guo
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China. and Xi'an Jiaotong University Shenzhen Research School, High-Tech Zone, Shenzhen, 518057, P. R. China
| | - Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| | - Pingyun Yuan
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Tao Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Ran Tian
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Yongkang Bai
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| |
Collapse
|