1
|
He Z, Chen Q, Ding S, Wang G, Takarada T, Maeda M. Suppressed DNA base pair stacking assembly of gold nanoparticles in an alcoholic solvent for enhanced ochratoxin A detection in Baijiu. Analyst 2023; 148:1291-1299. [PMID: 36846974 DOI: 10.1039/d3an00016h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The currently established DNA nanoprobes for the detection of mycotoxin from beverages have been limited by complicated sample pretreatment and uncontrollable nanoparticle flocculation in complex systems. We develop a rapid colorimetric approach for ochratoxin A (OTA) detection in Baijiu in a sample-in/"yes" or "no" answer-out fashion through target-modulated base pair stacking assembly of DNA-functionalized gold nanoparticles (DNA-AuNPs). The colorimetric signification of OTA relies on the competition of OTA with the AuNP surface-grafted DNA in binding with an OTA-targeted aptamer. The specific recognition of OTA by the aptamer prevents DNA duplex formation on the AuNP surface, thereby inhibiting the base pair stacking assembly of the DNA-AuNPs and giving rise to a "turn-on" color. By further suppressing DNA hybridization using a bulged loop design and an alcohol solution, the DNA-AuNPs exhibit an improved reproducibility for OTA sensing while maintaining excellent susceptivity to OTA. A detection limit of 88 nM was achieved along with high specificity towards OTA, which is lower than the maximum tolerated level of OTA in foodstuffs defined by countries worldwide. The entire reaction time, avoiding sample pretreatment, is less than 17 min. The DNA-AuNPs with anti-interference features and sensitive "turn-on" performance promise convenient on-site detection of mycotoxin from daily beverages.
Collapse
Affiliation(s)
- Zhiyu He
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Qianyuan Chen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Shansen Ding
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Guoqing Wang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Tohru Takarada
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mizuo Maeda
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
2
|
Zhang Y, Lin J, Zhuo Y, Zou Z, Li Y, Yang H, Xie W, Zeng J, Deng Y, Cai S, Ye J, Zou F, Zhong W. Untargeted metabolomics reveals alterations in the metabolic reprogramming of prostate cancer cells by double-stranded DNA-modified gold nanoparticles. BIOMATERIALS ADVANCES 2022; 135:212745. [PMID: 35929217 DOI: 10.1016/j.bioadv.2022.212745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 06/15/2023]
Abstract
Metabolic reprogramming plays an important role in the development of prostate cancer (PCa). However, there are few reports on the effects of nanomaterials as vectors on cancer metabolic reprogramming. Herein, a type of nanoparticle with good biocompatibility was synthesized by modifying the double-stranded of DNA containing a sulfhydryl group on the surface of gold nanoparticles (AuNPs-dsDNA) through salt-aging conjugation methods. The resultant AuNPs-dsDNA complexes possessed low toxicity to PC3 and DU145 cells in vitro. There was also no obvious hepatorenal toxicity after intravenous injection of AuNPs-dsDNA complexes in vivo, which indicated that these nanoparticles had good biological compatibilities. We investigated their biological functions using prostate cancer cells. Seahorse assay showed that AuNPs-dsDNA complexes could increase glycolysis and glycolysis capacity both in PC3 and DU145 cells. We further detected the expression of glycolysis-related genes by qPCR assay, and found that PKM2, PDHA, and LDHA were significantly upregulated. Furthermore, untargeted metabolomics revealed that PC (18:2(9Z,12Z)/18:2(9Z,12Z)) and PC (18:0/18:2 (9Z,12Z)) levels were decreased and inosinic acid level was increased in PC3 cells. Whereas (3S,6E,10E)-1,6,10,14-Phytatetraen-3-ol, Plasmenyl-PE 36:5 and Cer (d18:2/18:2) were decreased, PE 21:3 and 1-pyrrolidinecarboxaldehyde were increased in DU145 cells after co-culturing with AuNPs-dsDNA. In summary, we found that AuNPs and AuNPs-dsDNA complexes possibly regulate the metabolic reprogramming of cancer cells mainly through the lipid metabolic pathways, which could compensate for the previously mentioned phenomenon of enhanced glycolysis and glycolysis capacity. This will provide an important theoretical basis for our future research on the characteristic targeted design of nanomaterials for cancer metabolism.
Collapse
Affiliation(s)
- Yixun Zhang
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Jundong Lin
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Yangjia Zhuo
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Zhihao Zou
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Yuejiao Li
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China; Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Huikang Yang
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China; Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Wenjie Xie
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Jie Zeng
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Yulin Deng
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Shanghua Cai
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Jianheng Ye
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Fen Zou
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China.
| | - Weide Zhong
- Department of Urology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China.
| |
Collapse
|
3
|
Cheng L, Wang L, He Z, Sun X, Li Y, Wang G, Tian Y, Takarada T, Maeda M, Liang X. Plasmon switching of gold nanoparticles through thermo-responsive terminal breathing of surface-grafted DNA in hydrated ionic liquids. Analyst 2021; 146:4154-4160. [PMID: 33977966 DOI: 10.1039/d1an00548k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembly performed in ionic liquids (ILs) as a unique solvent promises distinct functions and applications in sensors, therapeutics, and optoelectronic devices due to the rich interactions between nanoparticle building blocks and ILs. However, the general consideration that common nanoparticles are readily destabilized by counterions in an IL has largely prevented researchers from investigating controlled nanoparticle assembly in IL-based systems. This study explores the assembling behaviour of double-stranded (ds) DNA-functionalized gold nanoparticles (dsDNA-AuNPs) in hydrated ionic liquids. The DNA base pair stacking assembly of dsDNA-AuNPs occurs at a low IL concentration (<5%). However, a moderate ionic liquid concentration (5-40%) can de-hybridize dsDNA and leaves single-stranded (ss) DNA stabilizing the AuNPs. In concentrated ionic liquids (>40%), interestingly, the higher ionic strength leads to the assembly of DNA-AuNPs. The triphasic assembly trend is also generally observed regardless of the type of IL. By down-regulation of DNA's melting temperature with the IL, the assembly of DNA-AuNPs affords robust response to a lower temperature range, promising applications in plasmonic devices and range-tunable temperature sensors.
Collapse
Affiliation(s)
- Lu Cheng
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Luyang Wang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Zhiyu He
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Xun Sun
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Yujin Li
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Guoqing Wang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China. and Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yongshuai Tian
- Qingdao Hightop Biotech Co., Ltd, 369 Hedong Road, High-Tech Industrial Development Zone, Qingdao 266111, China
| | - Tohru Takarada
- Bioengineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mizuo Maeda
- Bioengineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China. and Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
4
|
Nakauchi H, Maeda M, Kanayama N. Terminal Sequence-Specific Interparticle Attraction between DNA Duplex-Carrying Polystyrene Microparticles in Aqueous Salt Solution Assessed by Optical Tweezers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5573-5581. [PMID: 33871256 DOI: 10.1021/acs.langmuir.1c00349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The dispersion behavior of DNA duplex-carrying colloidal particles in aqueous high-salt solutions shows extraordinary selectivity against the duplex terminal sequence. We investigated the interparticle force between DNA duplex-carrying polystyrene (dsDNA-PS) microparticles in aqueous salt solutions and examined their behavior in relation to the duplex terminal sequences. Force-distance (F-D) curves for a pair of dsDNA-PS particles were recorded with a dual-beam optical tweezers system with the two optically trapped particles closely approaching each other. Interestingly, only 3-5% of the oligo-DNA strands on the dsDNA-PS particles formed a duplex with complementary DNAs, and the F-D curves showed a distinct specificity to the duplex terminal sequences in the interparticle force at a high-NaCl concentration; a clear attraction peak was observed in F-D curves only when the duplex terminal was a complementary base pair. The attractive strength reached 2.6 ± 0.5 pN at 500 mM NaCl and 4.3 ± 1.0 pN at 750 mM NaCl. By sharp contrast, no significant attraction occurred for the particles with mismatched duplex terminals even at 750 mM NaCl. Similar duplex terminal-specificity in the interparticle force was also confirmed for dsDNA-PS particles in divalent MgCl2 solutions. Considering that the duplex terminal sequences on the dsDNA-PS particles showed only a negligible difference in their surface charges under identical salt conditions, we concluded that the interparticle attraction observed only for the dsDNA-PS particles with complementary duplex terminals is attributable to the salt-facilitated stacking interaction between the paired terminal nucleobases (i.e., blunt-end stacking) on the dsDNA-PS surfaces. Our results thus demonstrate the occurrence of a duplex terminal-specific interparticle force between dsDNA-PS particles under high-salt conditions.
Collapse
Affiliation(s)
- Hiroya Nakauchi
- Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553, Japan
| | - Mizuo Maeda
- Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553, Japan
- Bioengineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Naoki Kanayama
- Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553, Japan
- Bioengineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Institute of Biomedical Science, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| |
Collapse
|
5
|
Nakauchi H, Maeda M, Kanayama N. DNA Terminal-Specific Dispersion Behavior of Polystyrene Latex Microparticles Densely Covered with Oligo-DNA Strands Under High-Salt Conditions. ANAL SCI 2021; 37:461-468. [PMID: 33281138 DOI: 10.2116/analsci.20scp04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We prepared microspheres densely covered with oligo-DNA strands by immobilizing amino-terminated oligo-DNA strands on the surface of carboxylate polystyrene latex (PS) particles via the amide bond formation. The obtained microspheres (ssDNA-PS) stably dispersed in neutral pH buffer containing high concentrations of NaCl. For the ssDNA-PS ≥1 μm diameter, only 3 - 5% of surface-immobilized oligo-DNA could form a duplex with the complementary strands. Nevertheless, the resulting ssDNA-PS showed a distinct duplex terminal dependency in their dispersion behavior under neutral pH and high NaCl conditions; the microspheres with fully-matched duplexes on the surface spontaneously aggregated in a non-crosslinking manner. By contrast, the microspheres with terminal-mismatched duplexes remained dispersed under the identical conditions. These results suggest that the micrometer-scale particles covered with oligo-DNA strands also have high susceptibility to a duplex terminal sequence in their dispersion property, similar to previously reported DNA-functionalized nanoparticles. This property could potentially be used in various applications including analytical purposes.
Collapse
Affiliation(s)
- Hiroya Nakauchi
- Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University
| | - Mizuo Maeda
- Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University.,Bioengineering Laboratory, RIKEN Cluster for Pioneering Research
| | - Naoki Kanayama
- Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University.,Bioengineering Laboratory, RIKEN Cluster for Pioneering Research.,Institute of Biomedical Science, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University
| |
Collapse
|
6
|
He Z, Yin H, Chang CC, Wang G, Liang X. Interfacing DNA with Gold Nanoparticles for Heavy Metal Detection. BIOSENSORS 2020; 10:E167. [PMID: 33172098 PMCID: PMC7694790 DOI: 10.3390/bios10110167] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
The contamination of heavy metals (e.g., Hg, Pb, Cd and As) poses great risks to the environment and human health. Rapid and simple detection of heavy metals of considerable toxicity in low concentration levels is an important task in biological and environmental analysis. Among the many convenient detection methods for heavy metals, DNA-inspired gold nanoparticles (DNA-AuNPs) have become a well-established approach, in which assembly/disassembly of AuNPs is used for colorimetric signaling of the recognition event between DNA and target heavy metals at the AuNP interface. This review focuses on the recent efforts of employing DNA to manipulate the interfacial properties of AuNPs, as well as the major advances in the colorimetric detection of heavy metals. Beginning with the introduction of the fundamental aspects of DNA and AuNPs, three main strategies of constructing DNA-AuNPs with DNA binding-responsive interface are discussed, namely, crosslinking, electrostatic interaction and base pair stacking. Then, recent achievements in colorimetric biosensing of heavy metals based on manipulation of the interface of DNA-AuNPs are surveyed and compared. Finally, perspectives on challenges and opportunities for future research in this field are provided.
Collapse
Affiliation(s)
- Zhiyu He
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Z.H.); (H.Y.); (X.L.)
| | - Huiling Yin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Z.H.); (H.Y.); (X.L.)
| | - Chia-Chen Chang
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
| | - Guoqing Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Z.H.); (H.Y.); (X.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Z.H.); (H.Y.); (X.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
7
|
He Z, Wang G, Liang X, Takarada T, Maeda M. DNA Base Pair Stacking Assembly of Anisotropic Nanoparticles for Biosensing and Ordered Assembly. ANAL SCI 2020; 37:415-423. [PMID: 33071270 DOI: 10.2116/analsci.20scr02] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Anisotropic gold nanoparticles have attracted great interest due to their unique physicochemical properties derived from the shape anisotropy. Manipulation of their interfacial interactions, and thereby the assembling behaviors are often requisite in their applications ranging from optical sensing and diagnosis to self-assembly. Recently, the control of interfacial force based on base pair stacking of DNA terminals have offered a new avenue to surface engineering of nanostructures. In this review, we focus on the DNA base stacking-induced assembly of anisotropic gold nanoparticles, such as nanorods and nanotriangles. The fundamental aspects of anisotropic gold nanoparticles are provided, including the mechanism of the anisotropic growth, the properties arising from the anisotropic shape, and the construction of DNA-grafted anisotropic gold nanoparticles. Then, the advanced applications of their functional assemblies in biosensing and ordered assembly are summarized, followed by a comparison with gold nanospheres. Finally, conclusions and the direction of outlooks are given including future challenges and opportunities in this field.
Collapse
Affiliation(s)
- Zhiyu He
- College of Food Science and Engineering, Ocean University of China
| | - Guoqing Wang
- College of Food Science and Engineering, Ocean University of China.,Bioengineering Laboratory, RIKEN Cluster for Pioneering Research.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao)
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao)
| | - Tohru Takarada
- Bioengineering Laboratory, RIKEN Cluster for Pioneering Research
| | - Mizuo Maeda
- Bioengineering Laboratory, RIKEN Cluster for Pioneering Research
| |
Collapse
|