1
|
Mahmoud AM, Mahnashi MH, El-Wekil MM. Double protein directed synthesis of chemically etched sulfur doped quantum dots for signal "on-off-on" sensing of glutathione mediated by copper ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4296-4303. [PMID: 37602775 DOI: 10.1039/d3ay00999h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
In this study, a novel "on-off-on" fluorescent probe was suggested for sensitive and selective assay of glutathione (GSH). The as-fabricated nanoswitch employs a Cu2+-sulfur quantum dot system (SQ-dots/Cu2+). The surface reactivity and water solubility of SQ-dots were improved through capping with egg white and bovine serum albumin proteins. The surface functional groups on the surface of double protein-protected SQ-dots enhanced the interaction with Cu2+ ions, resulting in the aggregation induced quenching of SQ-dots. Addition of GSH, a strong Cu2+ ion chelator, disassembles the large aggregates into relatively smaller ones, restoring the fluorescence emission of SQ-dots. Under optimized conditions, the fluorescence intensity was increased by increasing GSH amounts within the range of 0.13-550 μM with a detection limit (S/N = 3) of 0.04 μM. The SQ-dots/Cu2+ system was successfully applied for the detection of GSH in different matrices such as dietary supplements, human serum, and vegetable extract samples. The as-fabricated probe holds great potential for the synthesis of other functionalized SQ-dots for (bio) sensing.
Collapse
Affiliation(s)
- Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| |
Collapse
|
2
|
Huang Z, Xu K, Zhao L, Zheng LE, Xu N, Yan C, Hu X, Zhang Q, Liu J, Zhao Q, Xia Y. AND-Gated Nanosensor for Imaging of Glutathione and Apyrimidinic Endonuclease 1 in Cells, Animals, and Organoids. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37245159 DOI: 10.1021/acsami.3c02236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The development of a strategy for imaging of glutathione (GSH) and apurinic/apyrimidinic endonuclease 1 (APE1) in an organism remains challenging despite their significance in elaborating the correlated pathophysiological processes. Therefore, in this study, we propose a DNA-based AND-gated nanosensor for fluorescence imaging of the GSH as well as APE1 in living cells, animals, and organoids. The DNA probe is composed of a G-strand and A-strand. The disulfide bond in the G-strand is cleaved through a GSH redox reaction, and the hybridization stability between the G-strand and A-strand is decreased, leading to a conformational change of the A-strand. In the presence of APE1, the apurinic/apyrimidinic (AP) site in the A-strand is digested, producing a fluorescence signal for the correlated imaging of GSH and APE1. This nanosensor enables monitoring of the expression level change of GSH and APE1 in cells. Additionally, we illustrate the capability of this "dual-keys-and-locked" conceptual methodology in achieving specific tumor imaging when GSH and APE1 are present simultaneously (overexpressed GSH and APE1 in tumor cells) with improving tumor-to-normal tissue ratio in vivo. Furthermore, using this nanosensor, the GSH and APE1 also are visualized in organoids that recapitulate the phenotypic and functional traits of the original biological specimens. Overall, this study demonstrates the potential of our proposed biosensing technology in investigating the roles of various biological molecules involved in specific diseases.
Collapse
Affiliation(s)
- Zening Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Kaixiang Xu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Lijuan Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Li-E Zheng
- Department of Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| | - Nana Xu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Caixia Yan
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Xingjiang Hu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Qiao Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Jian Liu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Qingwei Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Yaokun Xia
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| |
Collapse
|
3
|
Liu A, Cai H, Xu Z, Li J, Weng X, Liao C, He J, Liu L, Wang Y, Qu J, Li H, Song J, Guo J. Multifunctional carbon dots for glutathione detection and Golgi imaging. Talanta 2023; 259:124520. [PMID: 37058943 DOI: 10.1016/j.talanta.2023.124520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/16/2023]
Abstract
Glutathione (GSH) is present in almost every cell in the body and plays various integral roles in many biological processes. The Golgi apparatus is a eukaryotic organelle for the biosynthesis, intracellular distribution, and secretion of various macromolecules; however, the mechanism of GSH in the Golgi apparatus has not been fully elucidated. Here, specific and sensitive sulfur-nitrogen co-doped carbon dots (SNCDs) with orange-red fluorescence was synthesized for the detection of GSH in the Golgi apparatus. The SNCDs have a Stokes shift of 147 nm and excellent fluorescence stability, and they exhibited excellent selectivity and high sensitivity to GSH. The linear response of the SNCDs to GSH was in the range of 10-460 μM (LOD = 0.25 μΜ). More importantly, we used SNCDs with excellent optical properties and low cytotoxicity as probes, and successfully realized golgi imaging in HeLa cells and GSH detection at the same time.
Collapse
Affiliation(s)
- Aikun Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration(Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Haojie Cai
- State Key Laboratory of Radio Frequency Heterogeneous Integration(Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Zhibing Xu
- State Key Laboratory of Radio Frequency Heterogeneous Integration(Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Jinlei Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration(Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Xiaoyu Weng
- State Key Laboratory of Radio Frequency Heterogeneous Integration(Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Changrui Liao
- State Key Laboratory of Radio Frequency Heterogeneous Integration(Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Jun He
- State Key Laboratory of Radio Frequency Heterogeneous Integration(Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Liwei Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration(Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Yiping Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration(Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Junle Qu
- State Key Laboratory of Radio Frequency Heterogeneous Integration(Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China
| | - Hao Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration(Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China.
| | - Jun Song
- State Key Laboratory of Radio Frequency Heterogeneous Integration(Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China.
| | - Jiaqing Guo
- State Key Laboratory of Radio Frequency Heterogeneous Integration(Shenzhen University); College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
4
|
Wang M, Wang J, Ma N, Yu S, Kong J, Zhang X. A novel colorimetric detection of glutathione based on stable free radical TEMPO oxidation of 3,3',5,5'-tetramethylbenzizine (TMB) via Copper(II) acetylacetonate catalysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121875. [PMID: 36170777 DOI: 10.1016/j.saa.2022.121875] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/21/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
In this work, a new colorimetric method for the determination of Glutathione (GSH) on the basis of stable free radical 2,2,6,6 - tetramethylpiperidine - 1 - oxyl (TEMPO) oxidation of 3,3',5,5'-tetramethylbenzizine (TMB) via copper(II) acetylacetonate (Cu(acac)2) catalysis was proposed. TEMPO was catalyzed by Cu(acac)2 to produce TEMPO+, then TEMPO+ oxidized TMB to produce oxidized TMB (ox - TMB). The resulting ox - TMB showed blue and possessed a distinct absorption peak about 650 nm. Whereas, GSH prohibited the generation of ox - TMB through inhibiting TMB oxidation. As compared to the case that GSH was absent, significantly enhanced absorption was determined, and was proportional to GSH amount. On this basis, a qualitative and quantitative detection method of GSH with the naked eye and the microplate reader was achieved. The developed TEMPO - based method achieved GSH biosensing with improved sensitivity in a good specificity - manner. The limit of detection (LOD) was 90 μM via naked eye, and the microplate reader was 4.71 μM. And the stable free radical TEMPO possessed higher stability and lower toxicity than traditional oxidant of H2O2. Moreover, this TEMPO - based method achieved good results in the detection of GSH in human serums.
Collapse
Affiliation(s)
- Meng Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
| | - Jiao Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
| | - Nan Ma
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
| | - Shuaibing Yu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, PR China
| |
Collapse
|
5
|
Qian S, Li L, Wu K, Wang Y, Wei G, Zheng J. Emerging and Versatile Platforms of Metal-Ion-Doped Carbon Dots for Biosensing, Bioimaging, and Disease Therapy. ChemMedChem 2023; 18:e202200479. [PMID: 36250779 DOI: 10.1002/cmdc.202200479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/16/2022] [Indexed: 01/24/2023]
Abstract
Metal ions possess abundant electrons and unoccupied orbitals, as well as large atomic radii, whose doping into carbon dots (CDs) is a facile strategy to endow CDs with additional physicochemical characteristics. After being doped with metal ions, CDs reveal obvious changes in their optical, electronic, and magnetic properties by adjustments to their electron density distribution and the energy gaps, leading them to be promising and competitive candidates as labeling probes, imaging agents, catalysts, nanodrugs, and so on. In this review, we summarize the fabrication methods of metal-ion-doped CDs (M-CDs), and highlight their biological applications including biosensing, bioimaging, tumor therapy, and anti-microbial treatment. Finally, the challenging future perspectives of M-CDs are analyzed. We hope this review will provide inspiration for further development of M-CDs in various biological aspects, and help readers who are interested in M-CDs and their biological applications.
Collapse
Affiliation(s)
- Sihua Qian
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), 315300, Ningbo, P. R. China
| | - Lin Li
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), 315300, Ningbo, P. R. China
| | - Kerong Wu
- Translational Research Laboratory for Urology, Department of Urology, Ningbo First Hospital, 315010, Ningbo, P. R. China
| | - Yuhui Wang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), 315300, Ningbo, P. R. China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, P. R. China
| | - Jianping Zheng
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), 315300, Ningbo, P. R. China
| |
Collapse
|
6
|
Huo P, Li Z, Yao R, Deng Y, Gong C, Zhang D, Fan C, Pu S. Dual-ligand lanthanide metal-organic framework for ratiometric fluorescence detection of the anthrax biomarker dipicolinic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121700. [PMID: 35933778 DOI: 10.1016/j.saa.2022.121700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Dipicolinic acid (DPA) is a unique biomarker of Bacillus anthracis. Development of a simple, fast, sensitive and timely DPA detection method is of great importance and interest for preventing mass disease outbreaks and treatment of anthrax. In this work, a novel lanthanide-doped fluorescence probe was constructed by coordination of Eu3+ with bifunctional UiO-66-(COOH)2-NH2 MOFs materials for efficient monitoring DPA. UiO-66-(COOH)2-NH2 MOFs were prepared using Zr4+ as a metal node, 1,2,4,5-benzenetetracarboxylic acid (H4BTC) and 2-aminoterephthalic acid (NH2-BDC) as bridging ligand through a simple one-pot synthesis method. By virtue their abundant carboxyl groups, UiO-66-(COOH)2-NH2 can readily grasp Eu3+ to form UiO-66-(COOH)2-NH2/Eu with coordinated water molecules at Eu sites. Upon interaction with DPA molecules, the coordinated H2O molecules were replaced by DPA molecules which transfer energy to Eu3+ in UiO-66-(COOH)2-NH2/Eu and sensitize Eu3+ luminescence. Meanwhile, DPA has a characteristic absorption band at 270 nm, which overlapped with the excitation spectrum of NH2-BDC, allowing the fluorescence of UiO-66-(COOH)2-NH2/Eu at 453 nm to be greatly quenched by DPA through inner filter effect (IFE). Therefore, the rationally designed UiO-66-(COOH)2-NH2/Eu complex not only exhibits strong hydrophilicity and high dispersion, but also serves as ratiometric fluorescence sensing platform for monitoring DPA concentration. This sensing platform showed a satisfactory linear relationship from 0.2 μM to 40 μM with a limit of detection of 25.0 nM and a noticeable fluorescence color change from blue to red, holding a great promise in practical applications.
Collapse
Affiliation(s)
- Panpan Huo
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Zhijian Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Ruihong Yao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Yonghui Deng
- Department of Chemistry, Fudan University, Shanghai 200433, PR China
| | - Congcong Gong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Daobin Zhang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; YuZhang Normal University, Nanchang 330013, PR China.
| |
Collapse
|
7
|
Lee CG, Lee C, Lee J, Nam JS, Kim B, Kwon T. Dual‐Modulated Release of a Cytotoxic Photosensitizer Using Photogenerated Reactive Oxygen Species and Glutathione. Angew Chem Int Ed Engl 2022; 61:e202210623. [DOI: 10.1002/anie.202210623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Chae Gyu Lee
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
- Center for Wave Energy Materials Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Chaiheon Lee
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
- Center for Wave Energy Materials Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Joonhee Lee
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Jung Seung Nam
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
- Center for Wave Energy Materials Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
- Institute for Cancer Genetics Department of Genetics and Development Columbia University Irving Medical Center New York NY 10032 USA
- Herbert Irving Comprehensive Cancer Center Columbia University Irving Medical Center New York NY 10032 USA
| | - Byeong‐Su Kim
- Department of Chemistry Yonsei University Seoul 03722 Republic of Korea
| | - Tae‐Hyuk Kwon
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
- Center for Wave Energy Materials Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| |
Collapse
|
8
|
Lee CG, Lee C, Lee J, Nam JS, Kim BS, Kwon TH. Dual‐Modulated Release of a Cytotoxic Photosensitizer Using Photogenerated Reactive Oxygen Species and Glutathione. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chae Gyu Lee
- Ulsan National Institute of Science and Technology Department of Chemistry KOREA, REPUBLIC OF
| | - Chaiheon Lee
- Ulsan National Institute of Science and Technology Department of Chemistry KOREA, REPUBLIC OF
| | - Joonhee Lee
- Ulsan National Institute of Science and Technology Department of Chemistry KOREA, REPUBLIC OF
| | - Jung Seung Nam
- Ulsan National Institute of Science and Technology Department of Chemistry KOREA, REPUBLIC OF
| | - Byeong-Su Kim
- Yonsei University Department of Chemistry KOREA, REPUBLIC OF
| | - Tae-Hyuk Kwon
- Ulsan National Institute of Science and Technology Department of Chemistry KOREA, REPUBLIC OF
| |
Collapse
|
9
|
Liu Y, Zhu M, Meng M, Wang Q, Wang Y, Lei Y, Zhang Y, Weng L, Chen X. A dual-responsive hyaluronic acid nanocomposite hydrogel drug delivery system for overcoming multiple drug resistance. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Zhang T, Gan Z, Zhen S, Hu Y, Hu X. Monitoring of glutathione using ratiometric fluorescent sensor based on MnO 2 nanosheets simultaneously tuning the fluorescence of Rhodamine 6G and thiamine hydrochloride. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120942. [PMID: 35114634 DOI: 10.1016/j.saa.2022.120942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
L-glutathione (GSH) which has reducibility and integrated detoxification plays an important role in maintaining normal immune system function. Its abnormal levels are relevant to some clinical diseases. In this work, a facile ratiometric fluorescence sensor for GSH was designed based on MnO2 nanosheets, Thiamine hydrochloride (VB1) and Rhodamine 6G (R6G). VB1 could be oxidized into fluorescent ox-VB1 due to the strong oxidizing property of MnO2, and MnO2 nanosheets simultaneously could quench the fluorescence of R6G based on the inner filter effect (IFE). MnO2 could react with GSH to form Mn2+, which caused its losing oxidizing property and quenching capacity. According to this principle, the concentration of ox-VB1 diminished, resulting in its fluorescence intensity decreasing at 455 nm and the fluorescence of R6G recovering at 560 nm. Under optimal conditions, the VB1-MnO2-R6G detection system showed a wide linear range towards GSH in the range of 1.0-300.0 µmolL-1 with a low detection limit reaching 0.52 µmolL-1. Furthermore, the method was also applied in the determination of GSH in human serum.
Collapse
Affiliation(s)
- Tian Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Zhiwen Gan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shujun Zhen
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yongmei Hu
- Chengdu Second People's Hospital, Chengdu 610017, PR China
| | - Xiaoli Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
11
|
Hou L, Pu L, Chen Y, Bai Y, Zhou Y, Chen M, Wang S, Lv Y, Ma C, Cheng P, Zhang K, Liang Q, Deng S, Wang D. Targeted Intervention of NF2-YAP Signaling Axis in CD24-Overexpressing Cells Contributes to Encouraging Therapeutic Effects in TNBC. ACS NANO 2022; 16:5807-5819. [PMID: 35420780 DOI: 10.1021/acsnano.1c10921] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Triple-negative breast cancer (TNBC) cells have not been usefully classified, and no targeted therapeutic plans are currently available, resulting in a high recurrence rate and metastasis potential. In this research, CD24high cells accounted for the vast majority of TNBC cells, and they were insensitive to Taxol but sensitive to ferroptosis agonists and effectively escaped phagocytosis by tumor-associated macrophages. Furthermore, the NF2-YAP signaling axis modulated the expression of ferroptosis suppressor protein 1 (FSP1) and CD24 in CD24high cells, with subsequent ferroptotic regulation and macrophage phagocytosis. In addition, a precision targeted therapy system was designed based on the pH level and glutathione response, and it can be effectively used to target CD24high cells to induce lysosomal escape and drug burst release through CO2 production, resulting in enhanced ferroptosis and macrophage phagocytosis through FSP1 and CD24 inhibition mediated by the NF2-YAP signaling axis. This system achieved dual antitumor effects, ultimately promoting cell death and thus inhibiting TNBC tumor growth, with some tumors even disappearing. The composite nanoprecision treatment system reported in this paper is a potential strategic tool for future use in the treatment of TNBC.
Collapse
Affiliation(s)
- Lingmi Hou
- Department of Academician (expert) Workstation, Biological Targeting Laboratory of Breast Cancer, Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, People’s Republic of China
- Department of Breast and Thyroid Surgery, Yingshan Hospital of West China Hospital, Sichuan University, Nanchong, Sichuan 673000, People’s Republic of China
| | - Lulan Pu
- Department of Academician (expert) Workstation, Biological Targeting Laboratory of Breast Cancer, Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, People’s Republic of China
- Department of Anatomy, North Sichuan Medical College, Nanchong, Sichuan 637000, People’s Republic of China
| | - Yu Chen
- Department of Academician (expert) Workstation, Biological Targeting Laboratory of Breast Cancer, Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, People’s Republic of China
- Department of Anatomy, North Sichuan Medical College, Nanchong, Sichuan 637000, People’s Republic of China
| | - Yuting Bai
- Department of Academician (expert) Workstation, Biological Targeting Laboratory of Breast Cancer, Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, People’s Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, People’s Republic of China
| | - Yuqing Zhou
- Department of Academician (expert) Workstation, Biological Targeting Laboratory of Breast Cancer, Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, People’s Republic of China
- Department of Anatomy, North Sichuan Medical College, Nanchong, Sichuan 637000, People’s Republic of China
| | - Maoshan Chen
- Department of Breast and Thyroid Surgery, Affiliated Suining Central Hospital of Chongqing Medical University, Suining, Sichuan 629000, People’s Republic of China
| | - Shuqi Wang
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, People’s Republic of China
| | - Yipin Lv
- Department of Digestive Diseases, The General Hospital of Western Theater Command, Chengdu, Sichuan 610036, People’s Republic of China
| | - Cui Ma
- Department of Mathematics, Army Medical University, Chongqing 400038, People’s Republic of China
| | - Panke Cheng
- Department of Cardiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, People’s Republic of China
| | - Kaijiong Zhang
- Department of Clinical Laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology, Chengdu, Sichuan 610041, People’s Republic of China
| | - Qi Liang
- Department of Academician (expert) Workstation, Biological Targeting Laboratory of Breast Cancer, Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, People’s Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, People’s Republic of China
| | - Shishan Deng
- Department of Academician (expert) Workstation, Biological Targeting Laboratory of Breast Cancer, Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, People’s Republic of China
- Department of Anatomy, North Sichuan Medical College, Nanchong, Sichuan 637000, People’s Republic of China
| | - Dongsheng Wang
- Department of Clinical Laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology, Chengdu, Sichuan 610041, People’s Republic of China
| |
Collapse
|
12
|
Zhang H, Zhang M, Zhang Y, Wang H, Zhao L, Xu H. Activatable fluorescence molecular imaging and anti-tumor effects investigation of GSH-sensitive BRD4 ligands. Bioorg Chem 2022; 120:105636. [PMID: 35123163 DOI: 10.1016/j.bioorg.2022.105636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/17/2021] [Accepted: 01/20/2022] [Indexed: 11/02/2022]
Abstract
Overexpression of bromodomain 4 (BRD4) is closely correlated with a variety of human cancers by regulating the histone post-translational modifications, which renders BRD4 a promising target for pharmacological discoveries of novel therapeutic agents for cancer therapy. We herein present the design, chemical synthesis, cellular imaging and biological assessment of a novel tumor-sensitive BRD4 ligand (compound 4) by introducing anticancer BRD4 inhibitor into naphthalimide moiety (fluorescent reporter) via a sulfonamide unit as glutathione (GSH)-specific cleavable linker. Upon reaction with abundant intramolecular GSH in cancer cells or free GSH in aqueous solution (pH = 7.4), sulfonamide cleavage of 4 occurs, leading to the release of BRD4 inhibitor and concomitant fluorescence-on. This activatable fluorescence molecular imaging was demonstrated to preferentially occur in tumor cells. Moreover, towards cancer cell lines MGC-803 cells and THP-1, compound 4 was identified to show better antitumor efficacy than net BRD4 inhibitor. Collectively, this study presents a drug delivery strategy, wherein the drug release can be directly monitored in the cellular content by fluorescence imaging, and provides a valuable compound 4 as a potential antitumor agent. Compound 4 may represent a useful tool for explorative studies of BRD4 inhibition, such as an improved understanding of BRD4 inhibitor release-related information.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Mingliang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yujie Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Han Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Linnan Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
13
|
Huo P, Li Z, Gong C, Yao R, Fan C, Chen Z, Pu S. Silver nanoparticles combined with amino-functionalized UiO-66 for sensitive detection of glutathione. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120617. [PMID: 34802928 DOI: 10.1016/j.saa.2021.120617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Herein, a fluorescent nanosensor has been constructed for detection of glutathione (GSH) based on NH2-UiO-66 and AgNPs. The NH2-UiO-66 was synthesized where 2-amino-terephthalic acid as the organic ligand and Zr4+ as the center metal ions. The AgNPs can enhance the fluorescence of NH2-UiO-66 based on metal enhanced fluorescence (MEF) effect. Moreover, in the present of GSH, the fluorescence of NH2-UiO-66@AgNPs was quenched via electrostatic interaction and Ag-S reaction. The present sensing strategy shows good linear relation with the concentration of GSH in the range of 0.2-1.0 μM and 1.0-30 μM, and the limit of detection is 79 nM. Furthermore, our fluorescent nanosensor was utilized to detect GSH in human serum with a recovery of 96.8-102.5%. The results indicated that NH2-UiO-66@AgNPs is successfully applied for high sensitive and selective detection of GSH in human serum.
Collapse
Affiliation(s)
- Panpan Huo
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Zhijian Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Congcong Gong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Ruihong Yao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Zhao Chen
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; YuZhang Normal University, Nanchang 330013, PR China.
| |
Collapse
|
14
|
Red-emission carbon dots as fluorescent “on–off–on” probe for highly sensitive and selective detection of Cu2+ and glutathione. Anal Bioanal Chem 2022; 414:2219-2233. [DOI: 10.1007/s00216-021-03859-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/27/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023]
|
15
|
Lv A, Chen Q, Zhao C, Li S, Sun S, Dong J, Li Z, Lin H. Long-wavelength (red to near-infrared) emissive carbon dots: Key factors for synthesis, fluorescence mechanism, and applications in biosensing and cancer theranostics. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Liu Y, Zhang L, Liang Y, Yang H, Guo X, Dong W. Spectroscopic cyclic voltammetry, and molecular docking study on the molecular interaction between synthesized blue emitting nitrogen‐doped carbon dots and human serum albumin. NANO SELECT 2021. [DOI: 10.1002/nano.202100148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yufeng Liu
- College of Pharmacy Liaoning University Shenyang P.R. China
| | - Lizhi Zhang
- College of Chemistry Liaoning University Shenyang P.R. China
| | - YuanHao Liang
- College of Pharmacy Liaoning University Shenyang P.R. China
| | - Hongtian Yang
- College of Pharmacy Liaoning University Shenyang P.R. China
| | - Xingjia Guo
- College of Chemistry Liaoning University Shenyang P.R. China
| | - Wei Dong
- College of Pharmacy Medical College Shenyang P.R. China
| |
Collapse
|
17
|
Li J, Wang X, Shen M, Shi X. Polyethylenimine-Assisted Generation of Optical Nanoprobes for Biosensing Applications. ACS APPLIED BIO MATERIALS 2020; 3:3935-3955. [PMID: 35025470 DOI: 10.1021/acsabm.0c00536] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Detection of analytes in biological systems is pivotal to explore their physiological roles and provide diagnostic and treatment options for related diseases, which however remains a great challenge. Optical nanoprobes that exhibit absorption or fluorescence signal changes in response to the targets of interest have emerged as a versatile class of biosensors in the field. Polyethylenimine (PEI) with abundant amine groups plays indispensable roles in the construction of optical nanoprobes and mediating the sensing processes. After interaction with analytes, PEI-based optical nanoprobes can be induced to form aggregates, be disassembled or separated into individual units, or undergo structure/component alterations. As such, the optical properties of these nanoprobes have corresponding changes, allowing for sensitive and selective detection of a wide variety of analytes in biological environment. Up to now, detections of reactive oxygen species, pH, metal ions, biothiols, neurotransmitters, therapeutic agents, oxygen levels, enzyme activities, and virus/bacteria have been successfully demonstrated using PEI-based optical nanoprobes. Herein, we summarize the recent developments of PEI-based optical nanoprobes for biosensing applications and highlight the probe designs and sensing mechanisms. The existing challenges and prospects regarding biosensing applications of PEI-based optical nanoprobes are also briefly discussed.
Collapse
Affiliation(s)
- Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiaoying Wang
- Xuhui District Center for Disease Control and Prevention, Shanghai 200237, China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.,CQM-Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
18
|
Chen Y, Lin Z, Miao C, Cai Q, Li F, Zheng Z, Lin X, Zheng Y, Weng S. A simple fluorescence assay for trypsin through a protamine-induced carbon quantum dot-quenching aggregation platform. RSC Adv 2020; 10:26765-26770. [PMID: 35515765 PMCID: PMC9055544 DOI: 10.1039/d0ra03970e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/26/2020] [Indexed: 12/25/2022] Open
Abstract
The development of a simple detection strategy for trypsin (Try) is urgent, and is ascribed to the diagnostic value of Try in several diseases. Herein, a facile but effective fluorescence strategy for Try was developed based on the protamine (Pro)-induced aggregation of carbon quantum dots (CQDs). The fluorescence of negatively charged CQDs was quenched with Pro due to the assembly of CQDs and Pro (CQDs/Pro) through electrostatic interaction. However, the highly positively charged Pro, which is rich in basic arginine residues, was preferred to be hydrolyzed by Try. Try can induce the deaggregation of CQDs/Pro, thereby enabling the release of CQDs to restore the fluorescence intensity. Thus, the use of CQDs/Pro as a testing platform will be employed as a “turn-on” method for Try. In addition, the fluorescence-resuming response was proportional to Try, ranging from 25 ng mL−1 to 500 ng mL−1 with a limit of detection (LOD) of 8.08 ng mL−1. This “turn-on” fluorescence assay for Try was label-free, convenient, and relatively free of interference from coexisting substances. Actual applications for Try monitoring and trypsin inhibitor screening also illustrated the considerable prospect of CQDs in the clinical field, combined with the superiority of the simple mixing operation. In this work, a simple melting method was developed for carbon quantum dot fabrication to integrate with protamine as an effective signal-on fluorescence strategy for trypsin detection.![]()
Collapse
Affiliation(s)
- Yiping Chen
- Department of Interventional Radiology
- The First Affiliated Hospital of Fujian Medical University
- Fuzhou
- China
| | - Zuan Lin
- Department of Pharmaceutical Analysis
- School of Pharmacy
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province
- Fujian Medical University
- Fuzhou 350122
| | - Chenfang Miao
- Department of Pharmaceutical Analysis
- School of Pharmacy
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province
- Fujian Medical University
- Fuzhou 350122
| | - Qianqian Cai
- Department of Pharmaceutical Analysis
- School of Pharmacy
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province
- Fujian Medical University
- Fuzhou 350122
| | - Fenglan Li
- Department of Pharmaceutical Analysis
- School of Pharmacy
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province
- Fujian Medical University
- Fuzhou 350122
| | | | - Xinhua Lin
- Department of Pharmaceutical Analysis
- School of Pharmacy
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province
- Fujian Medical University
- Fuzhou 350122
| | - Yanjie Zheng
- Department of Pharmaceutical Analysis
- School of Pharmacy
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province
- Fujian Medical University
- Fuzhou 350122
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis
- School of Pharmacy
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province
- Fujian Medical University
- Fuzhou 350122
| |
Collapse
|