1
|
Schwehr BJ, Hartnell D, Ellison G, Hindes MT, Milford B, Dallerba E, Hickey SM, Pfeffer FM, Brooks DA, Massi M, Hackett MJ. Fluorescent probes for neuroscience: imaging ex vivo brain tissue sections. Analyst 2024; 149:4536-4552. [PMID: 39171617 DOI: 10.1039/d4an00663a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Neurobiological research relies heavily on imaging techniques, such as fluorescence microscopy, to understand neurological function and disease processes. However, the number and variety of fluorescent probes available for ex vivo tissue section imaging limits the advance of research in the field. In this review, we outline the current range of fluorescent probes that are available to researchers for ex vivo brain section imaging, including their physical and chemical characteristics, staining targets, and examples of discoveries for which they have been used. This review is organised into sections based on the biological target of the probe, including subcellular organelles, chemical species (e.g., labile metal ions), and pathological phenomenon (e.g., degenerating cells, aggregated proteins). We hope to inspire further development in this field, given the considerable benefits to be gained by the greater availability of suitably sensitive probes that have specificity for important brain tissue targets.
Collapse
Affiliation(s)
- Bradley J Schwehr
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
| | - David Hartnell
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
- Curtin University, Curtin Health Innovation Research Institute, Perth, WA, Australia 6102
| | - Gaewyn Ellison
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
- Curtin University, Curtin Health Innovation Research Institute, Perth, WA, Australia 6102
| | - Madison T Hindes
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000
| | - Breah Milford
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
| | - Elena Dallerba
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
| | - Shane M Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000
| | - Frederick M Pfeffer
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Doug A Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000
| | - Massimiliano Massi
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
| | - Mark J Hackett
- Curtin University, School of Molecular and Life Sciences, Perth, WA, Australia 6845.
- Curtin University, Curtin Health Innovation Research Institute, Perth, WA, Australia 6102
| |
Collapse
|
2
|
Schwehr BJ, Hartnell D, Massi M, Hackett MJ. Luminescent Metal Complexes as Emerging Tools for Lipid Imaging. Top Curr Chem (Cham) 2022; 380:46. [PMID: 35976575 PMCID: PMC9385838 DOI: 10.1007/s41061-022-00400-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/20/2022] [Indexed: 12/01/2022]
Abstract
Fluorescence microscopy is a key tool in the biological sciences, which finds use as a routine laboratory technique (e.g., epifluorescence microscope) or more advanced confocal, two-photon, and super-resolution applications. Through continued developments in microscopy, and other analytical methods, the importance of lipids as constituents of subcellular organelles, signalling or regulating molecules continues to emerge. The increasing recognition of the importance of lipids to fundamental cell biology (in health and disease) has prompted the development of protocols and techniques to image the distribution of lipids in cells and tissues. A diverse suite of spectroscopic and microscopy tools are continuously being developed and explored to add to the "toolbox" to study lipid biology. A relatively recent breakthrough in this field has been the development and subsequent application of metal-based luminescent complexes for imaging lipids in biological systems. These metal-based compounds appear to offer advantages with respect to their tunability of the photophysical properties, in addition to capabilities centred around selectively targeting specific lipid structures or classes of lipids. The presence of the metal centre also opens the path to alternative imaging modalities that might not be applicable to traditional organic fluorophores. This review examines the current progress and developments in metal-based luminescent complexes to study lipids, in addition to exploring potential new avenues and challenges for the field to take.
Collapse
Affiliation(s)
- Bradley J Schwehr
- School of Molecular and Life Sciences, Curtin University, Perth, WA, 6845, Australia
| | - David Hartnell
- School of Molecular and Life Sciences, Curtin University, Perth, WA, 6845, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6845, Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, Perth, WA, 6845, Australia.
| | - Mark J Hackett
- School of Molecular and Life Sciences, Curtin University, Perth, WA, 6845, Australia. .,Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6845, Australia.
| |
Collapse
|
3
|
Dallerba E, Hartnell D, Hackett MJ, Massi M, Lowe AB. Well‐defined Tetrazole‐functional Copolymers as Macromolecular Ligands for Luminescent Ir(III) and Re(I) Metal Species: Synthesis, Photophysical Properties and Application in Bioimaging. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elena Dallerba
- School of Molecular and Life Sciences Curtin University Bentley Perth WA 6102 Australia
| | - David Hartnell
- School of Molecular and Life Sciences Curtin University Bentley Perth WA 6102 Australia
- Curtin Health Innovation Research Institute (CHIRI) Curtin University Bentley Perth WA 6102 Australia
| | - Mark J. Hackett
- School of Molecular and Life Sciences Curtin University Bentley Perth WA 6102 Australia
- Curtin Health Innovation Research Institute (CHIRI) Curtin University Bentley Perth WA 6102 Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences Curtin University Bentley Perth WA 6102 Australia
| | - Andrew B. Lowe
- School of Molecular and Life Sciences Curtin University Bentley Perth WA 6102 Australia
| |
Collapse
|
4
|
Hartnell D, Hollings A, Ranieri AM, Lamichhane HB, Becker T, Sylvain NJ, Hou H, Pushie MJ, Watkin E, Bambery KR, Tobin MJ, Kelly ME, Massi M, Vongsvivut J, Hackett MJ. Mapping sub-cellular protein aggregates and lipid inclusions using synchrotron ATR-FTIR microspectroscopy. Analyst 2021; 146:3516-3525. [PMID: 33881057 DOI: 10.1039/d1an00136a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visualising direct biochemical markers of cell physiology and disease pathology at the sub-cellular level is an ongoing challenge in the biological sciences. A suite of microscopies exists to either visualise sub-cellular architecture or to indirectly view biochemical markers (e.g. histochemistry), but further technique developments and innovations are required to increase the range of biochemical parameters that can be imaged directly, in situ, within cells and tissue. Here, we report our continued advancements in the application of synchrotron radiation attenuated total reflectance Fourier transform infrared (SR-ATR-FTIR) microspectroscopy to study sub-cellular biochemistry. Our recent applications demonstrate the much needed capability to map or image directly sub-cellular protein aggregates within degenerating neurons as well as lipid inclusions within bacterial cells. We also characterise the effect of spectral acquisition parameters on speed of data collection and the associated trade-offs between a realistic experimental time frame and spectral/image quality. Specifically, the study highlights that the choice of 8 cm-1 spectral resolutions provide a suitable trade-off between spectral quality and collection time, enabling identification of important spectroscopic markers, while increasing image acquisition by ∼30% (relative to 4 cm-1 spectral resolution). Further, this study explores coupling a focal plane array detector with SR-ATR-FTIR, revealing a modest time improvement in image acquisition time (factor of 2.8). Such information continues to lay the foundation for these spectroscopic methods to be readily available for, and adopted by, the biological science community to facilitate new interdisciplinary endeavours to unravel complex biochemical questions and expand emerging areas of study.
Collapse
Affiliation(s)
- David Hartnell
- School of Molecular and Life Sciences, Curtin University, Bentley, 6845, Western Australia. and Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia
| | - Ashley Hollings
- School of Molecular and Life Sciences, Curtin University, Bentley, 6845, Western Australia. and Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia
| | - Anna Maria Ranieri
- School of Molecular and Life Sciences, Curtin University, Bentley, 6845, Western Australia.
| | - Hum Bahadur Lamichhane
- School of Molecular and Life Sciences, Curtin University, Bentley, 6845, Western Australia.
| | - Thomas Becker
- School of Molecular and Life Sciences, Curtin University, Bentley, 6845, Western Australia.
| | - Nicole J Sylvain
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada S7N 5E5
| | - Huishu Hou
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada S7N 5E5
| | - M Jake Pushie
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada S7N 5E5
| | - Elizabeth Watkin
- Curtin Medical School, Curtin University, Bentley, Western Australia 6845
| | - Keith R Bambery
- ANSTO - Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria, 3168, Australia
| | - Mark J Tobin
- ANSTO - Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria, 3168, Australia
| | - Michael E Kelly
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada S7N 5E5
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, Bentley, 6845, Western Australia.
| | - Jitraporn Vongsvivut
- ANSTO - Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria, 3168, Australia
| | - Mark J Hackett
- School of Molecular and Life Sciences, Curtin University, Bentley, 6845, Western Australia. and Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia
| |
Collapse
|