1
|
Zhu C, Feng Z, Qin H, Chen L, Yan M, Li L, Qu F. Recent progress of SELEX methods for screening nucleic acid aptamers. Talanta 2024; 266:124998. [PMID: 37527564 DOI: 10.1016/j.talanta.2023.124998] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
Nucleic acid aptamers are oligonucleotide sequences screened by an in vitro methodology called Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Known as "chemical antibodies", aptamers can achieve specific recognition towards the targets through conformational changes with high affinity, and possess multiple attractive features including, but not limited to, easy and inexpensive to prepare by chemical synthesis, relatively stable and low batch-to-batch variability, easy modification and signal amplification, and low immunogenicity. Now, aptamers are attracting researchers' attentions from more than 25 disciplines, and have showed great potential for application and economic benefits in disease diagnosis, environmental detection, food security, drug delivery and discovery. Although some aptamers exist naturally as the ligand-binding elements of riboswitches, SELEX is a recognized method for aptamers screening. After thirty-two years of development, a series of SELEX methods have been investigated and developed, as well as have shown unique advantages to improve sequence performances or to explore screening mechanisms. This review would mainly focus on the novel or improved SELEX methods that are available in the past five years. Firstly, we present a clear overview of the aptamer's history, features, and SELEX development. Then, we highlight the specific examples to emphasize the recent progress of SELEX methods in terms of carrier materials, technical improvements, real sample-improved screening, post-SELEX and other methods, as well as their respects of screening strategies, implementation features, screening parameters. Finally, we discuss the remaining challenges that have the potential to hinder the success of SELEX and aptamers in practical applications, and provide the suggestions and future directions for developing more convenient, efficient, and stable SELEX methods in the future.
Collapse
Affiliation(s)
- Chao Zhu
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Ziru Feng
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Hongwei Qin
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Lu Chen
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China.
| | - Mengmeng Yan
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China.
| | - Linsen Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Feng Qu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
2
|
Takahara H, Tanaka H, Hashimoto M. Fast Thermocycling in Custom Microfluidic Cartridge for Rapid Single-Molecule Droplet PCR. SENSORS (BASEL, SWITZERLAND) 2023; 23:9884. [PMID: 38139729 PMCID: PMC10747138 DOI: 10.3390/s23249884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
The microfluidic droplet polymerase chain reaction (PCR), which enables simultaneous DNA amplification in numerous droplets, has led to the discovery of various applications that were previously deemed unattainable. Decades ago, it was demonstrated that the temperature holding periods at the denaturation and annealing stages in thermal cycles for PCR amplification could be essentially eliminated if a rapid change of temperature for an entire PCR mixture was achieved. Microfluidic devices facilitating the application of such fast thermocycling protocols have significantly reduced the time required for PCR. However, in microfluidic droplet PCR, ensuring successful amplification from single molecules within droplets has limited studies on accelerating assays through fast thermocycling. Our developed microfluidic cartridge, distinguished for its convenience in executing single-molecule droplet PCR with common laboratory equipment, features droplets positioned on a thin glass slide. We hypothesized that applying fast thermocycling to this cartridge would achieve single-molecule droplet PCR amplification. Indeed, the application of this fast protocol demonstrated successful amplification in just 22 min for 30 cycles (40 s/cycle). This breakthrough is noteworthy for its potential to expedite microfluidic droplet PCR assays, ensuring efficient single-molecule amplification within a remarkably short timeframe.
Collapse
Affiliation(s)
| | | | - Masahiko Hashimoto
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe 610-0321, Kyoto, Japan
| |
Collapse
|
3
|
Li H, Yao S, Wang C, Bai C, Zhou P. Diverse applications and development of aptamer detection technology. ANAL SCI 2023; 39:1627-1641. [PMID: 37700097 DOI: 10.1007/s44211-023-00409-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/04/2023] [Indexed: 09/14/2023]
Abstract
Aptamers have received extensive attention in recent years because of their advantages of high specificity, high sensitivity and low immunogenicity. Aptamers can perform almost all functions of antibodies through the combination of spatial structure and target, which are called "chemical antibodies". At present, aptamers have been widely used in cell imaging, new drug development, disease treatment, microbial detection and other fields. Due to the diversity of modifications, aptamers can be combined with different detection technologies to construct aptasensors. This review focuses on the diversity of aptamers in the field of detection and the development of aptamer-based detection technology and proposes new challenges for aptamers in this field.
Collapse
Affiliation(s)
- Haozheng Li
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Shibo Yao
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Cui Wang
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Chenjun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Pingkun Zhou
- College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| |
Collapse
|
4
|
Bertrand P. Aptamers Targeting the PD-1/PD-L1 Axis: A Perspective. J Med Chem 2023; 66:10878-10888. [PMID: 37561598 DOI: 10.1021/acs.jmedchem.3c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Aptamers have emerged in recent years as alternatives to antibodies or small molecules to interfere with the immune check points by blocking the PD-1/PD-L1 interactions and represent an interesting perspective for immuno-oncology. Aptamers are RNA or DNA nucleotides able to bind to a target with high affinity, with the target ranging from small molecules to proteins and up to cells. Aptamers are identified by the SELEX method that can be modified for specific purposes. The range of applications of aptamers covers therapy as well as new alternative assay technologies similar to ELISA. Aptamers' limited plasma stability can be managed using delivery strategies. The goal of this Perspective is to give an overview of the current development of aptamers targeting the most studied immune checkpoint modulators, PD-1 and PD-L1, and analogous strategies with aptamers for other immuno-related targets.
Collapse
Affiliation(s)
- Philippe Bertrand
- University of Poitiers, IC2MP UMR 7285 CNRS, 4 rue Michel Brunet B27, TSA 51106, 86073 Poitiers cedex 9, France
| |
Collapse
|
5
|
Chen S, Sun Y, Fan F, Chen S, Zhang Y, Zhang Y, Meng X, Lin JM. Present status of microfluidic PCR chip in nucleic acid detection and future perspective. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Shobeiri SS, Mashayekhi K, khorrami M, Moghadam M, Sankian M. Selection and characterization of a new human Interleukin-17A blocking DNA aptamer using protein-SELEX. Biochem Biophys Res Commun 2022; 637:32-39. [DOI: 10.1016/j.bbrc.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
7
|
Fang X, Li W, Gao T, Ain Zahra QU, Luo Z, Pei R. Rapid screening of aptamers for fluorescent targets by integrated digital PCR and flow cytometry. Talanta 2022; 242:123302. [PMID: 35180537 DOI: 10.1016/j.talanta.2022.123302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
Abstract
In this paper, we report the development of a new strategy termed integrated digital PCR-fluorescence activated sorting based SELEX (IFS-SELEX) that enables rapid screening of aptamers against fluorescent targets. Initially, this strategy employs an integrated digital PCR system to amplify each sequence of a preliminarily enriched library, which is obtained by a traditional SELEX method, on the surface of polystyrene beads. Then, the as-prepared beads are incubated with the fluorescent target and then subjected to fluorescence-activated sorting. Since only those sequences with high binding affinity for the target are collected and sequenced, unnecessary analysis of ineligible sequences is avoided by this method, and the aptamer selection process is thereby greatly streamlined. As a proof-of-concept, we applied this strategy for the screening of aptamers against two fluorescent targets, i.e., ciprofloxacin (CFX) and thioflavin T (ThT), and successfully obtained corresponding sequences with low dissociation constants. The binding affinities of aptamers for ThT were well associated with the sorting regions defined in the fluorescence channel of the flow cytometry process. The experimental results demonstrated that the as-designed IFS-SELEX method can serve as a universal platform for rapid, facile, and efficient aptamer selection against various fluorescent targets.
Collapse
Affiliation(s)
- Xiaona Fang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Wenjing Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Tian Gao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Qurat Ul Ain Zahra
- Biomedical Imaging Center, University of Science and Technology of China, Hefei, Anhui, 230026, China; The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Zhaofeng Luo
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
8
|
A review on the therapeutic applications of aptamers and aptamer-conjugated nanoparticles in cancer, inflammatory and viral diseases. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
9
|
Takahara H, Matsushita H, Inui E, Ochiai M, Hashimoto M. Convenient microfluidic cartridge for single-molecule droplet PCR using common laboratory equipment. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:974-985. [PMID: 33533381 DOI: 10.1039/d0ay01779e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We have previously established a cost-efficient in-house system for single-molecule droplet polymerase chain reaction (PCR) using a polydimethylsiloxane microfluidic cartridge and common laboratory equipment. However, the microfluidic cartridge was only capable of generating monodisperse water-in-oil droplets. Therefore, careful and time-consuming manual droplet handling using a micropipette was required to transfer droplets between the three discrete steps involved in the workflow of droplet PCR-i.e., (1) droplet generation; (2) PCR amplification; and (3) determination of the fluorescence intensity of the thermocycled droplets. In the current study, we developed a new microfluidic cartridge consisting of four layers, with a thin glass slide as the bottom layer. In this cartridge, droplets generated in the uppermost polydimethylsiloxane microfluidic layer are delivered to the glass slide in an online fashion. After the accumulation of many droplets on the glass slide, the cartridge is placed on the flatbed heat block of a thermocycler for PCR amplification. Direct fluorescence imaging of the thermocycled droplets on the glass slide is then carried out using a conventional fluorescence microscope. Efficient heat transfer from the heat block to the settled droplets through the thin glass slide was confirmed by successful PCR amplification inside the droplets, even from single template molecules. The new cartridge eliminates the need for manual droplet transfer between the major steps of droplet PCR analysis, allowing more convenient single-molecule droplet PCR than in our previous studies.
Collapse
Affiliation(s)
- Hirokazu Takahara
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321, Japan.
| | - Hiroo Matsushita
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321, Japan.
| | - Erika Inui
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321, Japan.
| | - Masashi Ochiai
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321, Japan.
| | - Masahiko Hashimoto
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321, Japan.
| |
Collapse
|