1
|
Rajeev A, Yin L, Kalambate PK, Khabbaz MB, Trinh B, Kamkar M, Mekonnen TH, Tang S, Zhao B. Nano-enabled smart and functional materials toward human well-being and sustainable developments. NANOTECHNOLOGY 2024; 35:352003. [PMID: 38768585 DOI: 10.1088/1361-6528/ad4dac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Fabrication and operation on increasingly smaller dimensions have been highly integrated with the development of smart and functional materials, which are key to many technological innovations to meet economic and societal needs. Along with researchers worldwide, the Waterloo Institute for Nanotechnology (WIN) has long realized the synergetic interplays between nanotechnology and functional materials and designated 'Smart & Functional Materials' as one of its four major research themes. Thus far, WIN researchers have utilized the properties of smart polymers, nanoparticles, and nanocomposites to develop active materials, membranes, films, adhesives, coatings, and devices with novel and improved properties and capabilities. In this review article, we aim to highlight some of the recent developments on the subject, including our own research and key research literature, in the context of the UN Sustainability development goals.
Collapse
Affiliation(s)
- Ashna Rajeev
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Lu Yin
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Pramod K Kalambate
- University of Waterloo, Department of Chemistry, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Mahsa Barjini Khabbaz
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Binh Trinh
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Milad Kamkar
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Tizazu H Mekonnen
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Institute for Polymer Research, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Centre for Bioengineering and Biotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Shirley Tang
- University of Waterloo, Department of Chemistry, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Centre for Bioengineering and Biotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Boxin Zhao
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Institute for Polymer Research, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Centre for Bioengineering and Biotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
2
|
Gimeno-Ferrero R, de Jesús JR, Leal MP. Efficient Strategy to Synthesize Tunable pH-Responsive Hybrid Micelles Based on Iron Oxide and Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11775-11784. [PMID: 38769025 PMCID: PMC11155236 DOI: 10.1021/acs.langmuir.4c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
The preparation of multifunctional nanomaterials based on inorganic nanoparticles with organic materials has emerged as a promising strategy for the development of new nanomedicines for in vitro and in vivo biomedical applications. Here, we synthesized pH-responsive hybrid inorganic micelles by combining a novel pH-responsive amphiphilic molecule with hydrophobic payloads. This amphiphile was synthesized in a one-pot reaction and self-assembled readily into micelles under acidic pH conditions. In the presence of hydrophobic NP payloads such as AuNPs or IONPs, the amphiphile self-organized around them through hydrophobic interactions, resulting in the formation of colloidally stable hybrid micelles. The size of the hydrophobic NPs determined the pH-response of the inorganic hybrid micelles, which is tuned from pH 7 to 11 for our pH-responsive amphiphilic molecule. This achievement represents a novel approach for the synthesis of tunable pH-responsive hybrid micelles based on inorganic NPs for biomedical imaging, hyperthermia treatment, and also drug delivery nanosystems.
Collapse
Affiliation(s)
- Raúl Gimeno-Ferrero
- Departamento de Química
Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Javier Rodríguez de Jesús
- Departamento de Química
Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Manuel Pernia Leal
- Departamento de Química
Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| |
Collapse
|
3
|
Alamier WM, Ali SK, Qudsieh IY, Imran M, Almashnowi MYA, Ansari A, Ahmed S. Hydrothermally Synthesized Z-Scheme Nanocomposite of ZIF-9 Modified MXene for Photocatalytic Degradation of 4-Chlorophenol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6004-6015. [PMID: 38451499 DOI: 10.1021/acs.langmuir.4c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
4-Chlorophenol (4CP) is a well-known environmental contaminant often detected in wastewater, generally arising from industrial processes such as chemical manufacture, pharmaceutical production, and pesticide formulation. 4CP is a matter of great concern since it is persistent and has the potential to have harmful impacts on both aquatic ecosystems and human health, owing to its hazardous and mutagenic properties. Hence, degradation of 4CP is of utmost significance. This research investigates the photocatalytic degradation of 4CP using a novel Z-scheme heterojunction nanocomposite composed of MXene and ZIF-9. The nanocomposite is synthesized through a two-step hydrothermal method and thoroughly characterized by using XRD, SEM, UV-visible spectroscopy, zeta potential, and electrochemical impedance spectroscopy studies, confirming successful fabrication with improved surface properties. The comparative photocatalytic degradation studies between pristine materials and the nanocomposite were performed, and significant enhancement in performance was observed. The effect of pH on the degradation efficiency is also explored and correlated with the surface charge. The Z-scheme photocatalysis mechanism is proposed, which is supported by time-resolved photoluminescence studies and scavenger experiments. The reusability of the nanocomposite is also evaluated. The study contributes to the development of efficient and sustainable photocatalysts for wastewater treatment.
Collapse
Affiliation(s)
- Waleed M Alamier
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
| | - Syed Kashif Ali
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
- Nanotechnology Research Unit, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
| | - Isam Y Qudsieh
- Department of Chemical Engineering, College of Engineering, Jazan University, PO Box 706, Jazan 45142, Saudi Arabia
| | - Mohd Imran
- Department of Chemical Engineering, College of Engineering, Jazan University, PO Box 706, Jazan 45142, Saudi Arabia
| | - Majed Y A Almashnowi
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
| | - Arshiya Ansari
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India
| | - Shahzad Ahmed
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India
- The Institute for Lasers, Photonics, and Biophotonics/Chemistry, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| |
Collapse
|
4
|
Zhang K, Zhou Y, Moreno S, Schwarz S, Boye S, Voit B, Appelhans D. Reversible crowdedness of pH-responsive and host-guest active polymersomes: Mimicking µm-sized cell structures. J Colloid Interface Sci 2024; 654:1469-1482. [PMID: 37858368 DOI: 10.1016/j.jcis.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
The structure-function characteristics of isolated artificial organelles (AOs) in protocells are mainly known, but there are few reports on clustered or aggregated AOs. To imitate µm-sized complex and heterogeneous cell structures, approaches are needed that enable reversible changes in the aggregation state of colloidal structures in response to chemical, biological, and external stimuli. To construct adaptive organelle-like or cell-like reorganization characteristics, we present an advanced crosslinking strategy to fabricate clustered polymersomes as a platform based on host-guest interactions between azobenzene-containing polymersomes (Azo-Psomes) and a β-cyclodextrin-modified polymer (β-CD polymer) as a crosslinker. First, the reversible (dis)assembly of clustered Azo-Psomes is carried out by the alternating input of crosslinker and adamantane-PEG3000 as a decrosslinker. Moreover, cluster size dependence is demonstrated by environmental pH. These offer the controlled fabrication of various homogeneous and heterogeneous Azo-Psomes structures, including the size regulation and visualization of clustered AOs through a fluorescent enzymatic cascade reaction. Finally, a temperature-sensitive crosslinking agent with β-CD units can promote the coaggregation of Azo-Psomes mediated by temperature changes. Overall, these (co-)clustered Azo-Psomes and their successful transformation in AOs may provide new features for modelling biological systems for eukaryotic cells and systems biology.
Collapse
Affiliation(s)
- Kehu Zhang
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany; Chair of Organic Chemistry of Polymers, Technische Universität Dresden, Dresden 01062, Germany
| | - Yang Zhou
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany; Chair of Organic Chemistry of Polymers, Technische Universität Dresden, Dresden 01062, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany.
| | - Simona Schwarz
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany; Chair of Organic Chemistry of Polymers, Technische Universität Dresden, Dresden 01062, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany.
| |
Collapse
|
5
|
Astakhov AM, Petrovskii VS, Frolkina MA, Markina AA, Muratov AD, Valov AF, Avetisov VA. Spontaneous Vibrations and Stochastic Resonance of Short Oligomeric Springs. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:41. [PMID: 38202496 PMCID: PMC10780788 DOI: 10.3390/nano14010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
There is growing interest in molecular structures that exhibit dynamics similar to bistable mechanical systems. These structures have the potential to be used as two-state operating units for various functional purposes. Particularly intriguing are the bistable systems that display spontaneous vibrations and stochastic resonance. Previously, via molecular dynamics simulations, it was discovered that short pyridine-furan springs in water, when subjected to stretching with power loads, exhibit the bistable dynamics of a Duffing oscillator. In this study, we extend these simulations to include short pyridine-pyrrole and pyridine-furan springs in a hydrophobic solvent. Our findings demonstrate that these systems also display the bistable dynamics, accompanied by spontaneous vibrations and stochastic resonance activated by thermal noise.
Collapse
Affiliation(s)
- Alexey M. Astakhov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Design Center for Molecular Machines, 119991 Moscow, Russia
| | - Vladislav S. Petrovskii
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Design Center for Molecular Machines, 119991 Moscow, Russia
| | - Maria A. Frolkina
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Design Center for Molecular Machines, 119991 Moscow, Russia
| | - Anastasia A. Markina
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Design Center for Molecular Machines, 119991 Moscow, Russia
| | - Alexander D. Muratov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Design Center for Molecular Machines, 119991 Moscow, Russia
| | - Alexander F. Valov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Design Center for Molecular Machines, 119991 Moscow, Russia
| | - Vladik A. Avetisov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Design Center for Molecular Machines, 119991 Moscow, Russia
| |
Collapse
|
6
|
Xue Y, Riva N, Zhao L, Shieh JS, Chin YT, Gatt A, Guo JJ. Recent advances of exosomes in soft tissue injuries in sports medicine: A critical review on biological and biomaterial applications. J Control Release 2023; 364:90-108. [PMID: 37866405 DOI: 10.1016/j.jconrel.2023.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Sports medicine is generally associated with soft tissue injuries including muscle injuries, meniscus and ligament injuries, tendon ruptures, tendinopathy, rotator cuff tears, and tendon-bone healing during injuries. Tendon and ligament injuries are the most common sport injuries accounting for 30-40% of all injuries. Therapies for tendon injuries can be divided into surgical and non-surgical methods. Surgical methods mainly depend on the operative procedures, the surgeons and postoperative interventions. In non-surgical methods, cell therapy with stem cells and cell-free therapy with secretome of stem cell origin are current directions. Exosomes are the main paracrine factors of mesenchymal stem cells (MSCs) containing biological components such as proteins, nucleic acids and lipids. Compared with MSCs, MSC-exosomes (MSC-exos) possess the capacity to escape phagocytosis and achieve long-term circulation. In addition, the functions of exosomes from various cell sources in soft tissue injuries in sports medicine have been gradually revealed in recent years. Along with the biological and biomaterial advances in exosomes, exosomes can be designed as drug carriers with biomaterials and exosome research is providing promising contributions in cell biology. Exosomes with biomaterial have the potential of becoming one of the novel therapeutic modalities in regenerative researches. This review summarizes the derives of exosomes in soft tissue regeneration and focuses on the biological and biomaterial mechanism and advances in exosomal therapy in soft tissue injuries.
Collapse
Affiliation(s)
- Yulun Xue
- Department of Orthopaedic Surgery, Suzhou Municipal Hospital/The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215006, Jiangsu, PR China; Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China
| | - Nicoletta Riva
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Lingying Zhao
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health of PR China, Suzhou 215006, Jiangsu, PR China; Department of Hematology, National Clinical Research Center for Hematologic Disease, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China
| | - Ju-Sheng Shieh
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei City 11490, Taiwan
| | - Yu-Tang Chin
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei City 11490, Taiwan
| | - Alexander Gatt
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Department of Haematology, Mater Dei Hospital, Msida, Malta
| | - Jiong Jiong Guo
- Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China; Department of Hematology, National Clinical Research Center for Hematologic Disease, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, PR China.
| |
Collapse
|
7
|
Shen Q, Fang C, Serpe MJ. Microgel-based etalon immunoassay for IgG detection. Anal Bioanal Chem 2023; 415:5645-5656. [PMID: 37421438 DOI: 10.1007/s00216-023-04834-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
We developed an immunoassay for mouse immunoglobulin (IgG) quantitation using poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAm-co-AAc) microgel-based etalon devices. To achieve this, a biotinylated primary antibody specific to mouse IgG was immobilized on the top Au layer of an etalon device via its interaction with a streptavidin-modified etalon surface. Mouse IgG captured on the etalon surface from the solution was quantified using an HRP-conjugated secondary antibody. HRP catalyzed the oxidation of 4-chloro-1-naphthol (4CN) to form insoluble 4-chloro-1-naphthon (4CNP), resulting in a concentration change of 4CN in solution. The etalon was able to detect the 4CN concentration change by monitoring the extent of the etalon's reflectance peak shift, which allows the quantitation of mouse IgG. The etalon-based assay can detect mouse IgG down to 0.018 nM with a linear range of 0.02-5 nM.
Collapse
Affiliation(s)
- Qiming Shen
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Changhao Fang
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Michael J Serpe
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
| |
Collapse
|
8
|
Jansen-van Vuuren RD, Naficy S, Ramezani M, Cunningham M, Jessop P. CO 2-responsive gels. Chem Soc Rev 2023; 52:3470-3542. [PMID: 37128844 DOI: 10.1039/d2cs00053a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CO2-responsive materials undergo a change in chemical or physical properties in response to the introduction or removal of CO2. The use of CO2 as a stimulus is advantageous as it is abundant, benign, inexpensive, and it does not accumulate in a system. Many CO2-responsive materials have already been explored including polymers, latexes, surfactants, and catalysts. As a sub-set of CO2-responsive polymers, the study of CO2-responsive gels (insoluble, cross-linked polymers) is a unique discipline due to the unique set of changes in the gels brought about by CO2 such as swelling or a transformed morphology. In the past 15 years, CO2-responsive gels and self-assembled gels have been investigated for a variety of emerging potential applications, reported in 90 peer-reviewed publications. The two most widely exploited properties include the control of flow (fluids) via CO2-triggered aggregation and their capacity for reversible CO2 absorption-desorption, leading to applications in Enhanced Oil Recovery (EOR) and CO2 sequestration, respectively. In this paper, we review the preparation, properties, and applications of these CO2-responsive gels, broadly classified by particle size as nanogels, microgels, aerogels, and macrogels. We have included a section on CO2-induced self-assembled gels (including poly(ionic liquid) gels).
Collapse
Affiliation(s)
- Ross D Jansen-van Vuuren
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Sina Naficy
- School of Chemical and Biomolecular Engineering, Centre for Excellence in Advanced Food Enginomics (CAFE), The University of Sydney, Sydney, NSW 2006, Australia
| | - Maedeh Ramezani
- Department of Chemistry, Chernoff Hall, Queen's University, Kingston, Ontario, K7K 2N1, Canada.
| | - Michael Cunningham
- Department of Engineering, Dupuis Hall, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Philip Jessop
- Department of Chemistry, Chernoff Hall, Queen's University, Kingston, Ontario, K7K 2N1, Canada.
| |
Collapse
|
9
|
Wang M, Lou J, Chen Y, Yang L, Wang H. Preparation and Properties of Photoresponsive Pendimethalin@Silica-cinnamamide/γ-CD Microspheres for Pesticide Controlled Release. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2270-2278. [PMID: 36716299 DOI: 10.1021/acs.jafc.2c07203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Photocontrolled pesticide delivery systems have broad prospects for application in agriculture. Here, a novel photoresponsive herbicide delivery system was fabricated by functionalizing silica microsphere surfaces with cinnamamide and encapsulating the silica-cinnamamide with γ-cyclodextrin (γ-CD) to form a double-layered microsphere shell loaded with pendimethalin (pendimethalin@silica-cinnamamide/γ-CD). The microspheres showed remarkable loading capacity for pendimethalin (approximately 30.25% w/w) and displayed excellent photoresponsiveness and controlled release. The cumulative drug release rate exceeded 80% over 72 h under UV or sunlight irradiation. The herbicidal activity of the microspheres against Echinochloa crusgalli (L.) Beauv. was almost the same as that of pendimethalin under UV or sunlight. A bioactivity survey confirmed that the pendimethalin@silica-cinnamamide/γ-CD microspheres exhibited longer duration weed control than commercial pendimethalin. Allium cepa chromosomal aberration assays demonstrated that the microspheres showed lower genotoxicity than pendimethalin. These advantages indicate that pendimethalin@silica-cinnamamide/γ-CD microspheres constitute an environmentally friendly herbicidal formulation.
Collapse
Affiliation(s)
- Meiyi Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin300457, China
| | - Jiayu Lou
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin300457, China
| | - Yapeng Chen
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin300457, China
| | - Leiyu Yang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin300457, China
| | - Huashan Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin300457, China
| |
Collapse
|
10
|
Kharandiuk T, Tan KH, Xu W, Weitenhagen F, Braun S, Göstl R, Pich A. Mechanoresponsive diselenide-crosslinked microgels with programmed ultrasound-triggered degradation and radical scavenging ability for protein protection. Chem Sci 2022; 13:11304-11311. [PMID: 36320583 PMCID: PMC9533411 DOI: 10.1039/d2sc03153a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022] Open
Abstract
In the context of controlled delivery and release, proteins constitute a delicate class of cargo requiring advanced delivery platforms and protection. We here show that mechanoresponsive diselenide-crosslinked microgels undergo controlled ultrasound-triggered degradation in aqueous solution for the release of proteins. Simultaneously, the proteins are protected from chemical and conformational damage by the microgels, which disintegrate to water-soluble polymer chains upon sonication. The degradation process is controlled by the amount of diselenide crosslinks, the temperature, and the sonication amplitude. We demonstrate that the ultrasound-mediated cleavage of diselenide bonds in these microgels facilitates the release and activates latent functionality preventing the oxidation and denaturation of the encapsulated proteins (cytochrome C and myoglobin) opening new application possibilities in the targeted delivery of biomacromolecules.
Collapse
Affiliation(s)
- Tetiana Kharandiuk
- DWI - Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| | - Kok Hui Tan
- DWI - Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| | - Wenjing Xu
- DWI - Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| | - Fabian Weitenhagen
- DWI - Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| | - Susanne Braun
- DWI - Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| | - Robert Göstl
- DWI - Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
| | - Andrij Pich
- DWI - Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 1 52074 Aachen Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus Urmonderbaan 22, 6167 RD Geleen The Netherlands
| |
Collapse
|
11
|
Poly(2-oxazoline)s as Stimuli-Responsive Materials for Biomedical Applications: Recent Developments of Polish Scientists. Polymers (Basel) 2022; 14:polym14194176. [PMID: 36236124 PMCID: PMC9572872 DOI: 10.3390/polym14194176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
Poly(2-oxazoline)s are the synthetic polymers that are the products of the cationic ring-opening polymerization (CROP) of 2-oxazoline monomers. Due to their beneficial properties, from which biocompatibility, stealth behavior, high functionalization possibilities, low dispersity, stability, nonionic character, and solubility in water and organic solvents should be noted, they have found many applications and gained enormous interest from scientists. Additionally, with high versatility attainable through copolymerization or through post-polymerization modifications, this class of polymeric systems has been widely used as a polymeric platform for novel biomedical applications. The chemistry of polymers significant expanded into biomedical applications, in which polymeric networks can be successfully used in pharmaceutical development for tissue engineering, gene therapies, and also drug delivery systems. On the other hand, there is also a need to create ‘smart’ polymer biomaterials, responsive to the specified factor, that will be sensitive to various environmental stimuli. The commonly used stimuli-responsive biomedical materials are based mostly on temperature-, light-, magnetic-, electric-, and pH-responsive systems. Thus, creating selective and responsive materials that allow personalized treatment is in the interest of the scientific world. This review article focuses on recent discoveries by Polish scientists working in the field of stimuli-responsive poly(2-oxazoline)s, and their work is compared and contrasted with results reported by other world-renowned specialists.
Collapse
|
12
|
Zhu JQ, Wu H, Li ZL, Xu XF, Xing H, Wang MD, Jia HD, Liang L, Li C, Sun LY, Wang YG, Shen F, Huang DS, Yang T. Responsive Hydrogels Based on Triggered Click Reactions for Liver Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201651. [PMID: 35583434 DOI: 10.1002/adma.202201651] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Globally, liver cancer, which is one of the major cancers worldwide, has attracted the growing attention of technological researchers for its high mortality and limited treatment options. Hydrogels are soft 3D network materials containing a large number of hydrophilic monomers. By adding moieties such as nitrobenzyl groups to the network structure of a cross-linked nanocomposite hydrogel, the click reaction improves drug-release efficiency in vivo, which improves the survival rate and prolongs the survival time of liver cancer patients. The application of a nanocomposite hydrogel drug delivery system can not only enrich the drug concentration at the tumor site for a long time but also effectively prevents the distant metastasis of residual tumor cells. At present, a large number of researches have been working toward the construction of responsive nanocomposite hydrogel drug delivery systems, but there are few comprehensive articles to systematically summarize these discoveries. Here, this systematic review summarizes the synthesis methods and related applications of nanocomposite responsive hydrogels with actions to external or internal physiological stimuli. With different physical or chemical stimuli, the structural unit rearrangement and the controlled release of drugs can be used for responsive drug delivery in different states.
Collapse
Affiliation(s)
- Jia-Qi Zhu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Han Wu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Zhen-Li Li
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Xin-Fei Xu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Hao Xing
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Ming-Da Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Hang-Dong Jia
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Lei Liang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Chao Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Li-Yang Sun
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Yu-Guang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Feng Shen
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Dong-Sheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Tian Yang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| |
Collapse
|
13
|
Khizar S, Elaissari A, Al-Dossary AA, Zine N, Jaffrezic-Renault N, Errachid A. Advancement in Nanoparticle-Based Biosensors for Point-of-Care In Vitro Diagnostics. Curr Top Med Chem 2022; 22:807-833. [DOI: 10.2174/1568026622666220401160121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/20/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Recently, there has been great progress in the field of extremely sensitive and precise detection of bioanalytes. The importance of the utilization of nanoparticles in biosensors has been recognized due to their unique properties. Specifically, nanoparticles of gold, silver, and magnetic plus graphene, quantum dots, and nanotubes of carbon are being keenly considered for utilizations within biosensors to detect nucleic acids, glucose, or pathogens (bacteria as well as a virus). Taking advantage of nanoparticles, faster and sensitive biosensors can be developed. Here we review the nanoparticles' contribution to the biosensors field and their potential applications.
Collapse
Affiliation(s)
- Sumera Khizar
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622 Lyon, France
| | - Abdelhamid Elaissari
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622 Lyon, France
| | - Amal Ali Al-Dossary
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia
| | - Nadia Zine
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622 Lyon, France
| | | | - Abdelhamid Errachid
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622 Lyon, France
| |
Collapse
|
14
|
Rohland P, Schröter E, Nolte O, Newkome GR, Hager MD, Schubert US. Redox-active polymers: The magic key towards energy storage – a polymer design guideline progress in polymer science. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101474] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Ghosh S, Avais M, Chattopadhyay S. Stimuli-responsive fluorescent nanogel: a nonconventional donor for ratiometric temperature and pH sensing. Chem Commun (Camb) 2022; 58:12807-12810. [DOI: 10.1039/d2cc04852c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reactive stimuli responsive fluorescent polyaminoamide nanogel (NANO-PAMAM) is synthesized via an aza-Michael polyaddition reaction in water and subsequently transformed to a ratiometric nanosensor via post-polymerization modification of the reactive NANO-PAMAM.
Collapse
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna, 801106, India
| | - Mohd Avais
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna, 801106, India
| | - Subrata Chattopadhyay
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna, 801106, India
| |
Collapse
|
16
|
Avetisov VA, Frolkina MA, Markina AA, Muratov AD, Petrovskii VS. Short Pyridine-Furan Springs Exhibit Bistable Dynamics of Duffing Oscillators. NANOMATERIALS 2021; 11:nano11123264. [PMID: 34947612 PMCID: PMC8707925 DOI: 10.3390/nano11123264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022]
Abstract
The intensive development of nanodevices acting as two-state systems has motivated the search for nanoscale molecular structures whose dynamics are similar to those of bistable mechanical systems, such as Euler arches and Duffing oscillators. Of particular interest are the molecular structures capable of spontaneous vibrations and stochastic resonance. Recently, oligomeric molecules that were a few nanometers in size and exhibited the bistable dynamics of an Euler arch were identified through molecular dynamics simulations of short fragments of thermo-responsive polymers subject to force loading. In this article, we present molecular dynamics simulations of short pyridine-furan springs a few nanometers in size and demonstrate the bistable dynamics of a Duffing oscillator with thermally-activated spontaneous vibrations and stochastic resonance.
Collapse
|
17
|
Johnson L, Gray DM, Niezabitowska E, McDonald TO. Multi-stimuli-responsive aggregation of nanoparticles driven by the manipulation of colloidal stability. NANOSCALE 2021; 13:7879-7896. [PMID: 33881098 DOI: 10.1039/d1nr01190a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The capacity to control the dispersed or aggregated state of colloidal particles is particularly attractive for facilitating a diverse range of smart applications. For this reason, stimuli-responsive nanoparticles have garnered much attention in recent years. Colloidal systems that exhibit multi-stimuli-responsive behaviour are particularly interesting materials due to the greater spatial and temporal control they display in terms of dispersion/aggregation status; such behaviour can be exploited for implant formation, easy separation of a previously dispersed material or for the blocking of unwanted pores. This review will provide an overview of the recent publications regarding multi-stimuli-responsive microgels and hybrid core-shell nanoparticles. These polymer-based nanoparticles are highly sensitive to environmental conditions and can form aggregated clusters due to a loss of colloidal stability, triggered by temperature, pH and ionic strength stimuli. We aim to provide the reader with a discussion of the recent developments in this area, as well as an understanding of the fundamental concepts which underpin the responsive behaviour, and an exploration of their applications.
Collapse
Affiliation(s)
- Luke Johnson
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, UK.
| | - Dominic M Gray
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, UK.
| | - Edyta Niezabitowska
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, UK.
| | - Tom O McDonald
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, UK.
| |
Collapse
|
18
|
Mutharani B, Ranganathan P, Chen SM, Tsai HC. Temperature‐responsive voltammetric sensor based on stimuli-sensitive semi-interpenetrating polymer network conductive microgels for reversible switch detection of nitrogen mustard analog chlorambucil (Leukeran™). Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
Romano A, Sangermano M, Rossegger E, Mühlbacher I, Griesser T, Giebler M, Palmara G, Frascella F, Roppolo I, Schlögl S. Hybrid silica micro-particles with light-responsive surface properties and Janus-like character. Polym Chem 2021. [DOI: 10.1039/d1py00459j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present work highlights the synthesis and post-modification of silica-based micro-particles containing photo-responsive polymer brushes with photolabile o-nitrobenzyl ester (o-NBE) chromophores.
Collapse
Affiliation(s)
- A. Romano
- Department of Applied Science and Technology
- Politecnico di Torino
- 10129 Torino
- Italy
| | - M. Sangermano
- Department of Applied Science and Technology
- Politecnico di Torino
- 10129 Torino
- Italy
| | - E. Rossegger
- Polymer Competence Center Leoben GmbH
- A-8700 Leoben
- Austria
| | - I. Mühlbacher
- Polymer Competence Center Leoben GmbH
- A-8700 Leoben
- Austria
| | - T. Griesser
- Institute of Chemistry of Polymeric Materials
- Montanuniversitaet Leoben
- A-8700 Leoben
- Austria
| | - M. Giebler
- Polymer Competence Center Leoben GmbH
- A-8700 Leoben
- Austria
| | - G. Palmara
- Department of Applied Science and Technology
- Politecnico di Torino
- 10129 Torino
- Italy
| | - F. Frascella
- Department of Applied Science and Technology
- Politecnico di Torino
- 10129 Torino
- Italy
| | - I. Roppolo
- Department of Applied Science and Technology
- Politecnico di Torino
- 10129 Torino
- Italy
| | - S. Schlögl
- Polymer Competence Center Leoben GmbH
- A-8700 Leoben
- Austria
| |
Collapse
|