1
|
Ji Y, Ni C, Shen Y, Xu Z, Tang L, Yu F, Zhu L, Lu H, Zhang C, Yang S, Wang X. ESRP1-mediated biogenesis of circPTPN12 inhibits hepatocellular carcinoma progression by PDLIM2/ NF-κB pathway. Mol Cancer 2024; 23:143. [PMID: 38992675 PMCID: PMC11238376 DOI: 10.1186/s12943-024-02056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/29/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Emerging evidence indicates the pivotal involvement of circular RNAs (circRNAs) in cancer initiation and progression. Understanding the functions and underlying mechanisms of circRNAs in tumor development holds promise for uncovering novel diagnostic indicators and therapeutic targets. In this study, our focus was to elucidate the function and regulatory mechanism of hsa-circ-0003764 in hepatocellular carcinoma (HCC). METHODS A newly discovered hsa-circ-0003764 (circPTPN12) was identified from the circbase database. QRT-PCR analysis was utilized to assess the expression levels of hsa-circ-0003764 in both HCC tissues and cells. We conducted in vitro and in vivo experiments to examine the impact of circPTPN12 on the proliferation and apoptosis of HCC cells. Additionally, RNA-sequencing, RNA immunoprecipitation, biotin-coupled probe pull-down assays, and FISH were employed to confirm and establish the relationship between hsa-circ-0003764, PDLIM2, OTUD6B, P65, and ESRP1. RESULTS In HCC, the downregulation of circPTPN12 was associated with an unfavorable prognosis. CircPTPN12 exhibited suppressive effects on the proliferation of HCC cells both in vitro and in vivo. Mechanistically, RNA sequencing assays unveiled the NF-κB signaling pathway as a targeted pathway of circPTPN12. Functionally, circPTPN12 was found to interact with the PDZ domain of PDLIM2, facilitating the ubiquitination of P65. Furthermore, circPTPN12 bolstered the assembly of the PDLIM2/OTUD6B complex by promoting the deubiquitination of PDLIM2. ESRP1 was identified to bind to pre-PTPN12, thereby fostering the generation of circPTPN12. CONCLUSIONS Collectively, our findings indicate the involvement of circPTPN12 in modulating PDLIM2 function, influencing HCC progression. The identified ESRP1/circPTPN12/PDLIM2/NF-κB axis shows promise as a novel therapeutic target in the context of HCC.
Collapse
Affiliation(s)
- Yang Ji
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
- Medical College, Yangzhou University, Yangzhou, China
| | - Chuangye Ni
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Yanjun Shen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Zhenggang Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Lei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Fei Yu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
- Department of General Surgery, Jinhu People's Hospital, Huaian City, China
| | - Lingbang Zhu
- Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Hao Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China.
| | - Chuanyong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China.
| | - Shikun Yang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China.
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), No. 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China.
| |
Collapse
|
2
|
Huang CF, Gottardi CJ, Mrksich M. Tyrosine phosphatase activity is restricted by basic charge substituting mutation of substrates. Sci Rep 2022; 12:15095. [PMID: 36064958 PMCID: PMC9445012 DOI: 10.1038/s41598-022-19133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022] Open
Abstract
Phosphorylation controls important cellular signals and its dysregulation leads to disease. While most phospho-regulation studies are focused on kinases, phosphatases are comparatively overlooked. Combining peptide arrays with SAMDI mass spectrometry, we show that tyrosine phosphatase activity is restricted by basic amino acids adjacent to phosphotyrosines. We validate this model using two β-catenin mutants associated with cancer (T653R/K) and a mouse model for intellectual disability (T653K). These mutants introduce a basic residue next to Y654, an established phosphorylation site where modification shifts β-catenin from cell-cell adhesions and towards its essential nuclear role as Wnt-signaling effector. We show that T653-basic mutant β-catenins are less efficiently dephosphorylated by phosphatases, leading to sustained Y654 phosphorylation and elevated Wnt signals, similar to those observed for Y654E phospho-mimic mutant mice. This model rationalizes how basic mutations proximal to phosphotyrosines can restrict counter-regulation by phosphatases, providing new mechanismistic and treatment insights for 6000+ potentially relevant cancer mutations.
Collapse
Affiliation(s)
- Che-Fan Huang
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Cara J Gottardi
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, 60611, USA.
| | - Milan Mrksich
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Cell & Developmental Biology, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
3
|
Friend or foe? Unraveling the complex roles of protein tyrosine phosphatases in cardiac disease and development. Cell Signal 2022; 93:110297. [PMID: 35259455 PMCID: PMC9038168 DOI: 10.1016/j.cellsig.2022.110297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/14/2022] [Accepted: 02/27/2022] [Indexed: 11/21/2022]
Abstract
Regulation of protein tyrosine phosphorylation is critical for most, if not all, fundamental cellular processes. However, we still do not fully understand the complex and tissue-specific roles of protein tyrosine phosphatases in the normal heart or in cardiac pathology. This review compares and contrasts the various roles of protein tyrosine phosphatases known to date in the context of cardiac disease and development. In particular, it will be considered how specific protein tyrosine phosphatases control cardiac hypertrophy and cardiomyocyte contractility, how protein tyrosine phosphatases contribute to or ameliorate injury induced by ischaemia / reperfusion or hypoxia / reoxygenation, and how protein tyrosine phosphatases are involved in normal heart development and congenital heart disease. This review delves into the newest developments and current challenges in the field, and highlights knowledge gaps and emerging opportunities for future research.
Collapse
|